Reviews
Sárosi: AdS2 holography and the SYK model, arXiv:1711.08482
Turnin: Pedagogical introduction to SYK model and 2D Dilaton Gravity, arXiv:2002.12187
Mertens, Turiaci: Solvable Models of Quantum Black Holes: A Review on Jackiw-Teitelboim Gravity, arXiv: 2210.10846
Partition function and 1-loop exactness
Stanford, Witten: Fermionic Localization of the Schwarzian Theory, arXiv:1703.04612
Relation to JT gravity and near horizon geometry of charged black holes
Maldacena, Stanford, Yang: Conformal symmetry and its breaking in two dimensional nearly Anti- de-Sitter space, arXiv:1606.01857
Jensen: Chaos in AdS2 holography, arXiv:1605.06098
Higher genus and matrix models
Saad, Shenker, Stanford: JT gravity as a matrix integral, arXiv:1903.11115
Johnson: The Microstate Physics of JT Gravity and Supergravity, arXiv:2201.11942
Geometric action and 2d Polyakov quantum gravity
Alekseev, Shatashvili: Path integral quantization of the coadjoint orbits of the Virasoro group and 2-d gravity, Nucl. Phys. B
Alekseev, Shatashvili: Coadjoint Orbits, Cocycles and Gravitational Wess-Zumino, arXiv:1801.07963
Boundary conditions of JT gravity
Ferrari: Gauge theory formulation of hyperbolic gravity, arXiv:2011.02108, talk
Goel, Iliesiu, Kruthoff, Yang: Classifying boundary conditions in JT gravity: from energy-branes to α-branes , arXiv:2010.12592
Relation to 2d BF theory
Valach, Youmans: Schwarzian quantum mechanics as a Drinfeld-Sokolov reduction of BF theory arXiv:1912.12331
Virasoro coadjoint orbits (Classification, Hamiltonian reduction, characters)
Witten: Coadjoint orbits of the Virasor algebra, project euclid
Dai, Pickrell: The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals, J. Geom. Phys.
Balog, Fehér, Palla : Coadjoint orbits of the Virasoro algebra and the global Liouville equation, arXiv:hep-th/9703045
Bajnok, Nogradi: Geometry of W-algebras from the affine Lie algebra point of view, arXiv:hep-th/0012190
Alekseev, Shatashvili: Characters, Coadjoint Orbits and Duistermaat-Heckman Integrals, arXiv:2004.03024
Oblak: BMS Particles in Three Dimensions, arXiv:1610.08526
The Schwarzian and Lorentz metrics
Kostant, Sternberg: The Schwartzian Derivative and the Conformal Geometry of the Lorentz Hyperboloid, Quantum Theories and Geometry
Duval, Guieu: The Virasoro group and the fourth geometry of Poincaré, arxiv:math/9806135
(Universal) Teichmüller Space
Imayoshi, Taniguchi: An Introduction to Teichmuller Spaces, springer
Nag, Verjovsky: Diff(S^1) and the Teichmüller spaces, project euclid
Nag: On the Tangent Space to the Universal Teichmuller Space https://arxiv.org/abs/alg-geom/9205007
Pekonen: Universal Teichmüller space in geometry and physics, arXiv:hep-th/9310045