引張り圧縮混合型シェルの形状決定
Form-finding of Tension-compression Mixed Shells
Form-finding of Tension-compression Mixed Shells
STARFISH
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
STARFISH
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
STARFISH
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
引張りと圧縮の面内力で釣り合う建築シェル構造の形状をコンピュータによる計算で求めました。計算は自作コンピュータプログラムによります。プログラムは応力関数が与える力の設計図をもとにシェル構造の形状の計算を試みます。しかし、引張と圧縮が混在するとほとんどの場合問題に解が存在しないことが知られています。そこでプログラムは与えられた応力関数を修正し、解を与える問題の発見を試みます。この作品はSiggraph Asia 2022に採択された論文「Interactive exploration of tension-compression mixed shells」で提案された手法を用いた計算例です。— 三木優彰
三木は一連の研究の中で、従来の純圧縮(あるいは純引張)システムはラプラス方程式、提案する引張圧縮混合型システムは波動方程式と本質的に同等であることを指摘します。前者ではある場所における形状は局所的で近接する範囲にのみ影響します。どのような境界条件に対しても解を持つ性質がありますが、形状のコントラストは少なくなだらかで平均的な印象です。一方、波動方程式ではある場所におけるシェル形状が特定の方向(応力関数の漸近方向)に沿って大域的に伝達する波を形成します。これによって計算ははるかに難しくなりますが、得られた解は生物の形に似たダイナミックな形状となります。— 舘知宏
We have computed a shape of a shell structure in which the in-plane tension and compression forces are balanced. The shape was obtained by running a computer code written by the authors. The program tries to find a shape of a shell based on the stress distribution specified by a stress function. However, it has already been pointed out that no solutions exist for a mixed tension-compression problem in most cases. To avoid the absence of solutions, the program tries to search for a problem that provides a solution by recursively refining the stress function initially given. This work is an example of applications of the computational method presented in the research paper titled "Interactive exploration of tension-compression mixed shells," which was accepted for presentation at Siggraph Asia 2022. — Masaaki Miki
In a series of studies, Miki points out that the conventional, pure compression (or pure tension) system is essentially equivalent to the Laplace equation and the proposed mixed tension-compression system to the wave equation. In the Laplace equation, the shape at a given location affects only a localized and proximate range. While it has the property of having a solution for any boundary condition, the shape is gently averaged with less contrast in shape. In the wave equation, on the other hand, the shell shape at a given location forms a wave that propagates globally along a particular direction (the asymptotic direction of the stress function). This makes the computation much more difficult, but the solution obtained will have a dynamic shape similar to that of a living organism. — Tomohiro Tachi
応力関数 (STARFISH)
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
Stress Function (STARFISH)
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
Stress Function (STARFISH)
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
STARFISHの計算に用いた応力関数の3Dプリントです。
A 3D-printed stress function used for computing the STARFISH.
FLOWER
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
FLOWER
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
FLOWER
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
別の応力関数を用いて計算した引張圧縮混合シェル構造の形状。
Another shape of tension-compression mixed shell structures computed using a different stress function.
応力関数 (FLOWER)
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
Stress Function (FLOWER)
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
三木優彰 (Toby Mitchell (SOM, USA)との共作) 2022
Stress Function (FLOWER)
Masaaki Miki (collaborative work with Toby Mitchell (SOM, USA)) 2022
FLOWERの計算に用いた応力関数の3Dプリントです。
A 3D-printed stress function used for computing the FLOWER.