You can also find my publications grouped in different topics:
Complete list of my articles (in reverse chronological order):
[30.] C. Pagani, and H. Sonoda, “Background dependent cutoff for Wilson actions”, submitted, arXiv:2408.03625.
[29.] C. Pagani, and H. Sonoda, “On the field independent additive constant in Wilson actions”, Phys. Rev. D 109 (2024) 125007, arXiv:2404.12881.
[28.] C. Pagani, and J. Sobieray, “A look at the operator product expansion in critical dynamics”, submitted, arXiv:2404.06142.
[27.] C. Pagani, and M. Reuter, “Time evolution of density matrices as a theory of random surfaces”, Annals Phys. 455 (2023) 169361, arXiv:2212.13748.
[26.] F. Rose, C. Pagani, and N. Dupuis, “Operator product expansion coefficients from the nonperturbative functional renormalization group”, Phys. Rev. D 105 (2022) 065020, arXiv:2110.13174.
[25.] A. Gorbunova, C. Pagani, G. Balarac, L. Canet, and V. Rossetto, “Eulerian spatio-temporal correlations in passive scalar turbulence”, Phys. Rev. F 6 (2021) 124606, arXiv:2104.12453.
[24.] C. Pagani and L. Canet, “Spatio-temporal correlation functions in scalar turbulence from functional renormalization group”, Phys. of Fluids 33 (2021) 065109, arXiv:2103.07326.
[23.] E. Gozzi, C. Pagani and M. Reuter, “The Response Field and the Saddle Points of Quantum Mechanical Path Integrals”, Annals Phys. 429 (2021) 168457, arXiv:2004.08874.
[22.] C. Pagani and M. Reuter, “Why the Cosmological Constant Seems to Hardly Care About Quantum Vacuum Fluctuations: Surprises From Background Independent Coarse Graining”, Front. in Phys. 8 (2020) 214.
[21.] C. Pagani and H. Sonoda, “Operator product expansion coefficients in the exact renormalization group formalism”, Phys. Rev. D 101 (2020) 10, arXiv:2001.07015.
[20.] M. Becker, C. Pagani and O. Zanusso, “Fractal geometry of higher derivative gravity”, Phys. Rev. Lett. 124 (2020) 151302, arXiv:1911.02415.
[19.] C. Pagani and M. Reuter, “Background Independent Quantum Field Theory and Gravitating Vacuum Fluctuations”, Annals Phys. 411 (2019) 167972, arXiv:1906.02507.
[18.] M. Becker and C. Pagani, “Geometric operators in the Einstein-Hilbert truncation”, Universe 5 (2019) 75.
[17.] M. Becker and C. Pagani, “Geometric operators in the asymptotic safety scenario for quantum gravity”, Phys. Rev. D 99 (2019) 066002, arXiv:1810.11816.
[16.] M. Tarpin, L. Canet, C. Pagani and N. Wschebor, “Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach”, J. Phys. A 52 (2019) 085501, arXiv:1809.00909.
[15.] C. Pagani and M. Reuter, “Finite Entanglement Entropy in Asymptotically Safe Quantum Gravity”, JHEP 1807 (2018) 039, arXiv:1804.02162.
[14.] C. Pagani and H. Sonoda, “On the geometry of the theory space in the ERG formalism”, Phys. Rev. D 97 (2018) 025015, arXiv:1710.10409.
[13.] C. Pagani and H. Sonoda, “Products of composite operators in the exact renormalization group formalism”, PTEP 2018, 023B02 (2018), arXiv:1707.09138.
[12.] C. Pagani, “Note on the super-extended Moyal formalism and its BBGKY hierarchy ”, Annals Phys. 385, 695 (2017), arXiv:1705.06964.
[11.] C. Pagani and M. Reuter, “Composite operators in Asymptotic Safety”, Phys. Rev. D 95 (2017) 066002, arXiv:1611.06522.
[10.] C. Pagani, “A note on scaling arguments in the effective average action formalism”, Phys. Rev. D 94 (2016) 045001, arXiv:1603.07250.
[9.] C. Pagani and R. Percacci, “Quantum gravity with torsion and non-metricity”, Class. Quant. Grav. 32 (2015) 195019, arXiv:1506.02882.
[8.] C. Pagani, “Functional Renormalization Group approach to the Kraichnan model”, Phys. Rev. E 92 (2015) 033016, Add. Phys. Rev. E 97, 049902 (2018), arXiv:1505.01293.
[7.] A. Codello, G. D’Odorico and C. Pagani, “Functional and Local Renormalization Groups”, Phys. Rev. D 91 (2015) 125016 , arXiv:1502.02439.
[6.] C. Pagani and R. Percacci, “Quantization and fixed points of non–integrable Weyl theory”, Class. Quant. Grav. 31 (2014) 115005, arXiv:1312.7767.
[5.] A. Codello, G. D’Odorico and C. Pagani, “A functional RG equation for the c-function”, JHEP 40 (2014) 1407, arXiv:1312.7097.
[4.] E. Cattaruzza, E. Gozzi and C. Pagani, “Entanglement, Superselection Rules and Supersymmetric Quantum Mechanics”, Phys. Lett. A 378 (2014) 2501, arXiv:1308.6212.
[3.] A. Codello, G. D’Odorico and C. Pagani, “Consistent closure of RG flow equations in quantum gravity”, Phys. Rev. D(R) 89 (2014) 081701, arXiv:1304.4777.
[2.] A. Codello, G. D’Odorico, C. Pagani and R. Percacci, “The Renormalization Group and Weyl-invariance”, Class. Quant. Grav. 30 (2013) 115015, arXiv:1210.3284.
[1.] E. Gozzi and C. Pagani, “Universal local symmetries and non-superposition in classical mechanics”, Phys. Rev. Lett. 105 (2010) 150604, arXiv:1006.3029.
Conference proceedings
G. D’Odorico , A. Codello and C. Pagani, “The Background Effective Average Action Approach to Quantum Gravity”, in the proceedings of the “1st Karl Schwarzschild Meeting on Gravitational Physics”, Springer Proc. Phys. 170 (2016) 233.
Books
E. Gozzi , E. Cattaruzza and C. Pagani, “Path Integrals for Pedestrians”, World Scientific Publishing, Singapore (2016).