This page contains some new numbers from Extensible-E system. Note that this page serves as a supplement to both Sbiis Saibian's Extensible-E system numbers, and DeepLineMadom's (DLM's) ultimate ExE googolism generator by adding some missing numbers. It is also inspired by my ExE generator of googolisms. (TO BE ADDED)
(1-1000)
UPDATE: I just realized / realised that DLM already coined some of my numbers in the previous regiment, but since -ring and -clang are coined by me first, However, I will leave it numbered and italicized for some names.
This regiment contains more additional numbers from guppy regiment, in which both Sbiis Saibian and DeepLineMadom did not cover. Note that I'll choose base 36 and 100 for that.
Firstly, we cover base 36 (niftimal, from jan Misali) first.
(1) niftimal-eyelash mite = 2*36^4 = 2*6^8 = 3,359,232
(2) niftimal-dust mite = 5*36^4 = 5*6^8 = 8,398,080
(3) niftimal-cheese mite = 8*36^4 = 8*6^8 = 13,436,928
(4) niftimal-clover mite = 2*36^5 = 2*6^10 = 120,932,352
(5) niftimal-pipsqueak = 36^7 = 6^14 = 78,364,164,096
(6) niftimal-squeaker = 5*36^10 = 5*6^20 = 18,280,792,200,314,880
(7) niftimal-small fry = 36^15 = 6^30 = 221,073,919,720,733,357,899,776
(8) niftimal-guppy or hexatrigesimal-guppy = 36^20 = 6^40 = 13,367,494,538,843,734,067,838,845,976,576
(9) niftimal-minnow or senary-gogol = 36^25 = 6^50 = 808,281,277,464,764,060,643,139,600,456,536,293,376
(10) niftimal-goby = 36^35 = 6^70 = 2955204414547681244658707659790455381671329323051646976
(11) niftimal-gogol or senary-googol = 36^50 = 6^100 = 653318623500070906096690267158057820537143710472954871543071966369497141477376
(12) niftimal-prawn = 36^65 = 6^130 = 144431708923714697282341921957287977256854489558705240134406338415596406037318860947517804001179467776
(13) niftimal-lightweight = 36^75 = 6^150 = 528065211594158537922059337706012522435358757507679707524085489790383401135070907691059808736208962288708707602661376
(14) niftimal-ogol = 36^80 = 6^160 = 31930084023729630725897914196175189439780351254600682546779877464711525840511797276927376021569948686526423526635060829618176
(15) niftimal-twerpuloid = 36^85 = 6^170 = 1930690080273624027887151037818827531499100120302505680593720304039680910700934264223011457738428313590475553612056275894398642814976
(16) niftimal-googol = 36^100 = 6^200 = 426825223812027400796974891518773732342988745354489429495479078935112929549619739019072139340757097296812815466676129830954465240517595242384015591919845376 ~ 4.268*10^155 (an apocalyptic number in base 36, means it has 666 in powers of 36)
now, for base 100.
(17) centesimal-eyelash mite = 2*100^4 = 2*10^8 = 200,000,000
(18) centesimal-dust mite = 5*100^4 = 5*10^8 = 500,000,000
(19) centesimal-cheese mite = 8*100^4 = 8*10^8 = 800,000,000
(20) centesimal-clover mite = 2*100^5 = 2*10^10 = 20,000,000,000
(21) centesimal-pipsqueak = 100^7 = 10^14 = 100 trillion = 100,000,000,000,000
(22) centesimal-squeaker = 5*100^10 = 5*10^20 = 5*guppy = 500,000,000,000,000,000,000
(23) centesimal-small fry = 100^15 = 10^30 = 1,000,000,000,000,000,000,000,000,000,000 (also equal to gobycrumb and nonillion)
(24) centesimal-guppy = 100^20 = 10^40 = 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (also equal to gogolspeck and gobycrowd)
(25) centesimal-minnow = 100^25 = 10^50 = 100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 (also equal to gogol)
(26) centesimal-goby = 100^35 = 10^70 (also equal to ogolspeck, lightweight-crumb and prawncrowd)
(27) centesimal-gogol = 100^50 = 10^100 (also equal to googol)
(28) centesimal-prawn = 100^65 = 10^130
(29) centesimal-lightweight = 100^75 = 10^150 (also equal to novenquadragintillion)
(30) centesimal-ogol = 100^80 = 10^160
(31) centesimal-googol = 100^100 = 10^200 (already existed in DLM's ExE generator as no. 290, but added for comparison)
(32) binary-guppybunch = 2^21 = 2,097,152
(33) binary-guppycrowd = 2^25 = 33,554,432 (also equal to minnowbit, and binary-gobyspeck)
(34) binary-guppyswarm = 2^30 = 1,073,741,824 (also equal to binary-gobycrumb, binary-minnowcrowd)
(35) binary-minnowbunch = 2^26 = 67,108,864
(36) binary-minnowcrowd = 2^30 = 1,073,741,824 (also equal to binary-gobycrumb, (34) binary-guppyswarm)
(37) binary-minnowswarm = 2^35 = 34,359,738,368 (also equal to gobybit)
(38) binary-gobybunch = 2^36 = 68,719,476,736
(39) binary-gobycrowd = 2^40 = 1,099,511,627,776 (also equal to binary-gogolspeck)
(40) binary-gobyswarm = 2^45 = 35,184,372,088,832 (also equal to binary-gogolcrumb)
(41) binary-gogolbunch = 2^51 = 2,251,799,813,685,248
(42) binary-gogolcrowd = 2^55 = 36,028,797,018,963,968
(43) binary-gogolswarm = 2^60 = 1,152,921,504,606,846,976 (also equal to guppybit)
(44) binary-ogolbunch = 2^81 = 2417851639229258349412352
(45) binary-ogolcrowd = 2^85 = 38685626227668133590597632 (also equal to binary-twerpuloid)
(46) binary-ogolswarm = 2^90 = 1,237,940,039,285,380,274,899,124,224 (also equal to binary-googolspeck, octal-gobycrumb)
(47) binary-googolbunch = 2^101 = 2535301200456458802993406410752
(48) binary-googolcrowd = 2^105 = 40564819207303340847894502572032
(49) binary-googolswarm = 2^110 = 1298074214633706907132624082305024
Now for octal (base 8)!
(50) octal-guppybunch = 8^21 = 2^63 = 9223372036854775808
(51) octal-guppycrowd = 8^25 = 2^75 = 37778931862957161709568
(52) octal-guppyswarm = 8^30 = 2^90 = 1,237,940,039,285,380,274,899,124,224 (also equal to octal-gobycrumb, binary-googolspeck, and (46) binary-ogolswarm)
(53) octal-minnowbunch = 8^26 = 2^78 = 302231454903657293676544
(54) octal-minnowcrowd = 8^30 = 2^90 = 1,237,940,039,285,380,274,899,124,224 (also equal to octal-gobycrumb, binary-googolspeck, (46) binary-ogolswarm, and (52) octal-guppyswarm)
(55) octal-minnowswarm = 8^35 = 2^105 = 40564819207303340847894502572032 (also equal to gobybyte)
(56) octal-gobybunch = 8^36 = 2^108 = 324518553658426726783156020576256
(57) octal-gobycrowd = 8^40 = 2^120 = 1329227995784915872903807060280344576 (also equal to octal-gogolspeck)
(58) octal-gobyswarm = 8^45 = 2^135 = 43556142965880123323311949751266331066368 (also equal to octal-gogolcrumb)
(59) octal-gogolbunch = 8^51 = 2^153 = 11417981541647679048466287755595961091061972992
(60) octal-gogolcrowd = 8^55 = 2^165 = 46768052394588893382517914646921056628989841375232
(61) octal-gogolswarm = 8^60 = 2^180 = 1532495540865888858358347027150309183618739122183602176
(62) octal-ogolbunch = 8^81 = 2^243 = 14134776518227074636666380005943348126619871175004951664972849610340958208
(63) octal-ogolcrowd = 8^85 = 2^255 = 57896044618658097711785492504343953926634992332820282019728792003956564819968 (also equal to octal-twerpuloid)
(64) octal-ogolswarm = 8^90 = 2^270 = 1,897,137,590,064,188,545,819,787,018,382,342,682,267,975,428,761,855,001,222,473,056,385,648,716,020,711,424 (also equal to octal-googolspeck)
(65) octal-googolbunch = 8^101 = 2^303 = 16296287810675888690147565507275025288411747149327490005089123594835050398106693649467179008 (also equal to ecetonbit)
(66) octal-googolcrowd = 8^105 = 2^315 = 66749594872528440074844428317798503581334516323645399060845050244444366430645017188217565216768
(67) octal-googolswarm = 8^110 = 2^330 = 2187250724783011924372502227117621365353169430893212436425770606409952999199375923223513177023053824 (21.873% of googol)
It's now duodecimal (or dozenal)'s turn! Note that since neither Sbiis Saibian, nor DeepLineMadom coined -speck, -crumb, and -chunk versions of the googolism, I will add it here. I also added existing googolisms, but this time, I added different name for the number. Expect most duplicates for some googolisms.
(68) duodecimal-guppyspeck or (69) dozenal-guppyspeck = 12^10 = 61,917,364,224
(70) duodecimal-guppycrumb or (71) dozenal-guppycrumb = 12^15 = 15,407,021,574,586,368
(72) duodecimal-guppychunk or (73) dozenal-guppychunk = 12^19 = 319479999370622926848
duodecimal-guppy or (74) dozenal-guppy = 12^20 = 3833759992447475122176
(75) duodecimal-guppybunch or (76) dozenal-guppybunch = 12^21 = 46005119909369701466112
(77) duodecimal-guppycrowd or (78) dozenal-guppycrowd = 12^25 = 953962166440690129601298432
(79) duodecimal-guppyswarm or (80) dozenal-guppyswarm = 12^30 = 237376313799769806328950291431424
(81) duodecimal-minnowspeck or (82) dozenal-minnowspeck = 12^15 = 15,407,021,574,586,368 (also equal to (70) duodecimal-guppycrumb and (71) dozenal-guppycrumb)
(83) duodecimal-minnowcrumb or (84) dozenal-minnowcrumb = 12^20 = 3833759992447475122176 (also equal to duodecimal-guppy and (74) dozenal-guppy)
(85) duodecimal-minnowchunk or (86) dozenal-minnowchunk = 12^24 = 79496847203390844133441536
(87) duodecimal-minnow or (88) dozenal-minnow = 12^25 = 953962166440690129601298432 (also equal to (77) duodecimal-guppycrowd or (78) dozenal-guppycrowd)
(89) duodecimal-minnowbunch or (90) dozenal-minnowbunch = 12^26 = 11447545997288281555215581184
(91) duodecimal-minnowcrowd or (92) dozenal-minnowcrowd = 12^30 = 237376313799769806328950291431424 (also equal to (79) duodecimal-guppyswarm or (80) dozenal-guppyswarm)
(93) duodecimal-minnowswarm or (94) dozenal-minnowswarm = 12^35 = 59066822915424320448445358917464096768
(95) duodecimal-gobyspeck or (96) dozenal-gobyspeck = 12^25 = 953962166440690129601298432 (also equal to (77) duodecimal-guppycrowd, (78) dozenal-guppycrowd, (87) duodecimal-minnow or (88) dozenal-minnow)
(97) duodecimal-gobycrumb or (98) dozenal-gobycrumb = 12^30 = 237376313799769806328950291431424 (also equal to (79) duodecimal-guppyswarm or (80) dozenal-guppyswarm, (91) duodecimal-minnowcrowd or (92) dozenal-minnowcrowd)
(99) duodecimal-gobychunk or (100) dozenal-gobychunk = 12^34 = 4922235242952026704037113243122008064 (has 37 digits)
(101) duodecimal-goby or (102) dozenal-goby = 12^35 = 59066822915424320448445358917464096768 (has 38 digits) (also equal to (93) duodecimal-minnowswarm or (94) dozenal-minnowswarm)
(103) duodecimal-gobybunch or (104) dozenal-gobybunch = 12^36 = 708801874985091845381344307009569161216 (has 39 digits)
(105) duodecimal-gobycrowd or (106) dozenal-gobycrowd = 12^40 = 14697715679690864505827555550150426126974976 (has 44 digits)
(107) duodecimal-gobyswarm or (108) dozenal-gobyswarm = 12^45 = 3657261988008837196714082302655030834027437228032 (has 49 digits)
(109) duodecimal-gogolspeck or (110) dozenal-gogolspeck = 12^40 = 14697715679690864505827555550150426126974976 (has 44 digits) (also equal to (105) duodecimal-gobycrowd or (106) dozenal-gobycrowd)
(111) duodecimal-gogolcrumb or (112) dozenal-gogolcrumb = 12^45 = 3657261988008837196714082302655030834027437228032 (has 49 digits) (also equal to (107) duodecimal-gobyswarm or (108) dozenal-gobyswarm)
(113) duodecimal-gogolchunk or (114) dozenal-gogolchunk = 12^49 = 75836984583351248111063210627854719374392938360471552 (has 53 digits)
duodecimal-gogol or (115) dozenal-gogol = 12^50 = 910,043,815,000,214,977,332,758,527,534,256,632,492,715,260,325,658,624 (has 54 digits)
(116) duodecimal-gogolbunch or (117) dozenal-gogolbunch = 12^51 = 10920525780002579727993102330411079589912583123907903488 (has 56 digits)
(118) duodecimal-gogolcrowd or (119) dozenal-gogolcrowd = 12^55 = 226448022574133493239664969923404146376427323657354286727168 (has 60 digits)
(120) duodecimal-gogolswarm or (121) dozenal-gogolswarm = 12^60 = 56347514353166785389812313795980500551139163800306781874894667776 (has 65 digits)
(122) duodecimal-prawn or (123) dozenal-prawn = 12^65 = 14021064691527197542117777666481419913141060406757937147493789972037632 (has 71 digits)
(124) duodecimal-ogolspeck or (125) dozenal-ogolspeck = 12^70 = 3488889569322095618800250852305904679826716343134391016285174746322068045824 (has 76 digits)
(126) duodecimal-lightweight, (127) duodecimal-ogolcrumb or (128) dozenal-ogolcrumb = 12^75 = 868147369313555697017304020080982873290641481094816785364272602476812835978477568 (has 81 digits)
(129) duodecimal-ogolchunk or (130) dozenal-ogolchunk = 12^79 = 18001903850085890933350816160399260860554741751982120861313556684959190966849710850048 (has 86 digits)
duodecimal-ogol or (131) dozenal-ogol = 12^80 = 216,022,846,201,030,691,200,209,793,924,791,130,326,656,901,023,785,450,335,762,680,219,510,291,602,196,530,200,576 (has 87 digits)
(132) duodecimal-ogolbunch or (133) dozenal-ogolbunch = 12^81 = 2592274154412368294402517527097493563919882812285425404029152162634123499226358362406912 (has 88 digits)
(134) duodecimal-twerpuloid, (135) duodecimal-ogolcrowd or (136) dozenal-ogolcrowd = 12^85 = 53753396865894868952730603441893626541442689995550581177948499244381184879957767002869727232 (has 92 digits)
(137) duodecimal-ogolswarm, (138) dozenal-ogolswarm, (139) duodecimal-googolspeck or (140) dozenal-googolspeck = 12^90 = 13375565248934352031245861515653274879560267436972842215671280963977858996049651078858079966593024 (has 98 digits)
(141) duodecimal-googolcrumb or (142) dozenal-googolcrumb = 12^95 = 3328268652022832684638970212663035694830740466876826274209916184828538609705026777254413754247275347968 (has 103 digits)
(143) duodecimal-googolchunk or (144) dozenal-googolchunk = 12^99 = 69014978768345458548673686329780708168010234321157869622016822008604576610843435253147523608071501615464448 (has 107 digits)
duodecimal-googol or (145) dozenal-googol = 12^100 = 828179745220145502584084235957368498016122811853894435464201864103254919330121223037770283296858019385573376 (has 108 digits)
(146) duodecimal-googolbunch or (147) dozenal-googolbunch = 12^101 = 9938156942641746031009010831488421976193473742246733225570422369239059031961454676453243399562296232626880512 (has 109 digits)
(148) duodecimal-googolcrowd or (149) dozenal-googolcrowd = 12^105 = 206077622362619245699002848601743918098347871519228260165428278248541128086752724170934455133323774679750994296832 (has 114 digits)
(150) duodecimal-googolswarm or (151) dozenal-googolswarm = 12^110 = 51278706927735272145774276823269142628248097565872606433483849333140985984082853860901962339735221501111799412869300224 (has 114 digits)
Hexadecimal, your floor is yours now!
(152) hexadecimal-guppyspeck = 16^10 = 2^40 = 1,099,511,627,776 (also equal to binary-gogolspeck, (39) binary-gobycrowd)
(153) hexadecimal-guppycrumb = 16^15 = 2^60 = 1,152,921,504,606,846,976 (also equal to guppybit, (43) binary-gogolswarm)
(154) hexadecimal-guppychunk = 16^19 = 2^76 = 75557863725914323419136
(155) hexadecimal-guppybunch = 16^21 = 2^84 = 19342813113834066795298816
(156) hexadecimal-guppycrowd = 16^25 = 2^100 = 1267650600228229401496703205376 (also equal to googolbit, quaternary-gogol)
(157) hexadecimal-guppyswarm = 16^30 = 2^120 = 1329227995784915872903807060280344576 (also equal to (57) octal-gobycrowd, octal-gogolspeck)
(158) hexadecimal-minnowspeck = 16^15 = 2^60 (also equal to (153) hexadecimal-guppycrumb)
(159) hexadecimal-minnowcrumb = 16^20 = 2^80 = 1208925819614629174706176 (also equal to ogolbit, hexadecimal-guppy)
(160) hexadecimal-minnowchunk = 16^24 = 2^96 = 79228162514264337593543950336
(161) hexadecimal-minnow = 16^25 = 2^100 = 953962166440690129601298432 (also equal to (156) hexadecimal-guppycrowd, googolbit, quaternary-gogol)
(162) hexadecimal-minnowbunch = 16^26 = 2^104 = 20282409603651670423947251286016 (has 32 digits)
(163) hexadecimal-minnowcrowd = 16^30 = 2^120 = 1329227995784915872903807060280344576 (has 37 digits) (also equal to (57) octal-gobycrowd, octal-gogolspeck, (157) hexadecimal-guppyswarm)
(164) hexadecimal-minnowswarm = 16^35 = 2^140 = 1393796574908163946345982392040522594123776 (has 43 digits)
(165) hexadecimal-gobyspeck = 16^25 = 2^100 = 953962166440690129601298432 (also equal to (156) hexadecimal-guppycrowd, (161) hexadecimal-minnow, googolbit, quaternary-gogol)
(166) hexadecimal-gobycrumb = 16^30 = 2^120 = 1329227995784915872903807060280344576 (also equal to (57) octal-gobycrowd, octal-gogolspeck, (157) hexadecimal-guppyswarm, (163) hexadecimal-minnowcrowd)
(167) hexadecimal-gobychunk = 16^34 = 2^136 = 87112285931760246646623899502532662132736 (has 41 digits)
(168) hexadecimal-goby = 16^35 = 2^140 = 1393796574908163946345982392040522594123776 (has 43 digits) (also equal to (164) hexadecimal-minnowswarm)
(169) hexadecimal-gobybunch = 16^36 = 2^144 = 22300745198530623141535718272648361505980416 (has 44 digits)
(170) hexadecimal-gobycrowd = 16^40 = 2^160 = 1461501637330902918203684832716283019655932542976 (has 49 digits)
(171) hexadecimal-gobyswarm = 16^45 = 2^180 = 1532495540865888858358347027150309183618739122183602176 (has 55 digits)
(172) hexadecimal-gogolspeck = 16^40 = 2^160 = 1461501637330902918203684832716283019655932542976 (has 49 digits) (also equal to (170) hexadecimal-gobycrowd)
(173) hexadecimal-gogolcrumb = 16^45 = 2^180 = 1532495540865888858358347027150309183618739122183602176 (has 55 digits) (also equal to (171) hexadecimal-gobyswarm)
(174) hexadecimal-gogolchunk = 16^49 = 2^196 = 100433627766186892221372630771322662657637687111424552206336 (has 60 digits)
(175) hexadecimal-gogolbunch = 16^51 = 2^204 = 25711008708143844408671393477458601640355247900524685364822016 (has 62 digits)
(176) hexadecimal-gogolcrowd = 16^55 = 2^220 = 1684996666696914987166688442938726917102321526408785780068975640576 (has 67 digits) (apocalyptic number)
(177) hexadecimal-gogolswarm = 16^60 = 2^240 = 1766847064778384329583297500742918515827483896875618958121606201292619776 (has 73 digits)
(178) hexadecimal-prawn = 16^65 = 2^260 = 1852673427797059126777135760139006525652319754650249024631321344126610074238976 (has 79 digits)
(179) hexadecimal-ogolspeck = 16^70 = 2^280 = 1942668892225729070919461906823518906642406839052139521251812409738904285205208498176 (has 85 digits)
(180) hexadecimal-lightweight or (181) hexadecimal-ogolcrumb = 16^75 = 2^300 = 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397376 (has 91 digits) (also equal to googolbyte, 8^100)
(182) hexadecimal-ogolchunk = 16^79 = 2^316 = 133499189745056880149688856635597007162669032647290798121690100488888732861290034376435130433536 (has 96 digits)
(183) hexadecimal-ogolbunch = 16^81 = 2^324 = 34175792574734561318320347298712833833643272357706444319152665725155515612490248800367393390985216 (has 98 digits)
(184) hexadecimal-twerpuloid or (185) hexadecimal-ogolcrowd = 16^85 = 2^340 = 2239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115776 (has 103 digits)
(186) hexadecimal-ogolswarm or (187) hexadecimal-googolspeck = 16^90 = 2^360 = 2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934976 (has 109 digits)
(188) hexadecimal-googolcrumb = 16^95 = 2^380 = 2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176 (has 115 digits)
(189) hexadecimal-googolchunk = 16^99 = 2^396 = 161390617380431786853494948250188242145606612051826469551916209783790476376052574664352834580008614464743948248296718336 (has 120 digits)
(190) hexadecimal-googolbunch = 16^101 = 2^404 = 41315998049390537434494706752048189989275292685267576205290549704650361952269459114074325652482205302974450751563959894016 (has 122 digits)
(191) hexadecimal-googolcrowd = 16^105 = 2^420 = 2707685248164858261307045101702230179137145581421695874189921465443966120903931272499975005961073806735733604454495675614232576 (has 127 digits)
(192) hexadecimal-googolswarm = 16^110 = 2^440 = 2839213766779714416208296124562517712318911565184836172974571090549372219192960637992933791850638927971728600024477257552869537611776 (has 133 digits)
I will add a googolism that is equal to 2^2^2^n.
(193) hexadecimal-prawn-chunk = 16^64 = 2^256 = 2^2^8 = 2^2^2^3 = 115792089237316195423570985008687907853269984665640564039457584007913129639936 (has 78 digits)
I added some modifiers such as -ring, -clang, -blang, -thrang (we will explain it later), in addition to the existing modifiers such as -ding, -chime, -bell, -toll, -gong, etc. Most of these numbers are based off of powers of 2. I will not add any decimal expansions for this section. Names in italic which are not numbered are existing googolisms added for comparison.
Let's begin with -ding....
guppyding = 10^100 (equal to a googol)
(194) minnowding = 10^125 (equal to 100 quadragintillion)
(195) gobyding = 10^175 (equal to 10 septenquinquagintillion)
gogolding = 10^250
binary-guppyding = 2^100 (equal to a googolbit or little googol)
(196) binary-minnowding = 2^125
(197) binary-gobyding = 2^175
binary-gogolding = 2^250
octal-guppyding = 8^100 = 2^300 (equal to a googolbyte)
(198) octal-minnowding = 8^125 = 2^375
(199) octal-gobyding = 8^175 = 2^525
octal-gogolding = 8^250 = 2^750
(200) hexadecimal-minnowding = 16^125 = 2^500 (also equal to binary-googolding)
(201) hexadecimal-gobyding = 16^175 = 2^700
(202) prawn-ding = 10^325 = E325
(203) lightweight-ding = 10^375 = E375
ogolding = 10^400
(204) twerpuloid-ding = 10^425 = E425
googolding = 10^500
(205) binary-prawn-ding = 2^325
(206) binary-lightweight-ding = 2^375 (also equal to (198) octal-minnowding)
(207) binary-twerpuloid-ding = 2^425
binary-googolding = 2^500
(208) octal-prawn-ding = 8^325 = 2^975
(209) octal-lightweight-ding = 8^375 = 2^1125
(210) octal-twerpuloid-ding = 8^425 = 2^1275
octal-googolding = 8^500 = 2^1500
(211) hexadecimal-prawn-ding = 16^325 = 2^1300
(212) hexadecimal-lightweight-ding = 16^375 = 2^1500
(213) hexadecimal-twerpuloid-ding = 16^425 = 2^1700
The next one, -chime...
guppychime = 10^200 (also equal to gargoogol)
(214) minnowchime = 10^250 (also equal to gogolding)
(215) gobychime = 10^350
gogolchime = 10^500 (also equal to googolding)
binary-guppychime = 2^200
(216) binary-minnowchime = 2^250
(217) binary-gobychime = 2^350
binary-gogolchime = 2^500 (also equal to googolding)
octal-guppychime = 8^200 = 2^600
(218) octal-minnowchime = 8^250 = 2^750
(219) octal-gobychime = 8^350 = 2^1050
octal-gogolchime = 8^500 = 2^1500
(220) hexadecimal-minnowchime = 16^250 = 2^1000 (also equal to binary-googolchime)
(221) hexadecimal-gobychime = 16^350 = 2^1400
(222) prawn-chime = 10^650 = E650
(223) lightweight-chime = 10^750 = E750
ogolchime = 10^800 = E800
(224) twerpuloid-chime = 10^850 = E850
googolchime = 10^1000 = E1000
(225) binary-prawn-chime = 2^650
(226) binary-lightweight-chime = 2^750 (also equal to (218) octal-minnowchime)
(227) binary-twerpuloid-chime = 2^850
binary-googolchime = 2^1000
(228) octal-prawn-chime = 8^650 = 2^1950
(229) octal-lightweight-chime = 8^750 = 2^2250
(230) octal-twerpuloid-chime = 8^850 = 2^2550
octal-googolchime = 8^1000 = 2^3000
(231) hexadecimal-prawn-chime = 16^650 = 2^2600
(232) hexadecimal-lightweight-chime = 16^750 = 2^3000 (also equal to octal-googolchime, 8^1000)
(233) hexadecimal-twerpuloid-chime = 16^850 = 2^3400
-bell, it's time to shine!
guppybell = 10^1000 (also equal to googolchime)
(234) minnowbell = 10^1250
(235) gobybell = 10^1750
gogolbell = 10^2500
(236) binary-minnowbell = 2^1250
(237) binary-gobybell = 2^1750
(238) octal-minnowbell = 8^1250 = 2^3750
(239) octal-gobybell = 8^1750 = 2^5250
(240) hexadecimal-minnowbell = 16^1250 = 2^5000
(241) hexadecimal-gobybell = 16^1750 = 2^7000
(242) prawn-bell = 10^3250 = E3,250
(243) lightweight-bell = 10^3750 = E3,750
ogolbell = 10^4000
(244) twerpuloid-bell = 10^4250 = E4,250
googolbell = 10^5000
(245) binary-prawn-bell = 2^3250
(246) binary-lightweight-bell = 2^3750 (also equal to (238) octal-minnowbell)
(247) binary-twerpuloid-bell = 2^4250
(248) binary-googolbell = 2^5000 (also equal to (240) hexadecimal-minnowbell)
(249) octal-prawn-bell = 8^3250 = 2^9750
(250) octal-lightweight-bell = 8^3750 = 2^11,250
(251) octal-twerpuloid-bell = 8^4250 = 2^12,750
(252) octal-googolbell = 8^5000 = 2^15,000
(253) hexadecimal-prawn-bell = 16^3250 = 2^13,000
(254) hexadecimal-lightweight-bell= 16^3750 = 2^15,000 (also equal to (252) octal-googolbell, 8^5000)
(255) hexadecimal-twerpuloid-bell = 16^4250 = 2^17,000
(256) hexadecimal-googolbell = 16^5000 = 2^20,000
-toll's the time...
(257) minnowtoll = 10^2500
(258) gobytoll = 10^3500
(259) binary-minnowtoll = 2^2500
(260) binary-gobytoll = 2^3500
(261) octal-minnowtoll = 8^2500 = 2^7500
(262) octal-gobytoll = 8^3500 = 2^10,500
(263) hexadecimal-minnowtoll = 16^2500 = 2^10,000
(264) hexadecimal-gobytoll = 16^3500 = 2^14,000
(265) prawn-toll = 10^6500 = E6,500
(266) lightweight-toll = 10^7500 = E7,500
(267) twerpuloid-toll = 10^8500 = E8,500
*googoltoll = 10^10,000
(268) binary-prawn-toll = 2^6500
(269) binary-lightweight-toll = 2^7500 (also equal to (261) octal-minnowtoll)
(270) binary-twerpuloid-toll = 2^8500
(271) binary-googoltoll = 2^10,000 (also (263) hexadecimal-minnowtoll)
(272) octal-prawn-bell = 8^6500 = 2^19,500
(273) octal-lightweight-toll = 8^7500 = 2^22,500
(274) octal-twerpuloid-toll = 8^8500 = 2^25,500
(275) octal-googoltoll = 8^10,000 = 2^30,000
(276) hexadecimal-prawn-bell = 16^3250 = 2^13,000
(277) hexadecimal-lightweight-toll = 16^7500 = 2^30,000 (also equal to (275) octal-googoltoll, 8^10,000)
(278) hexadecimal-twerpuloid-bell = 16^8500 = 2^34,000
(279) hexadecimal-googoltoll = 16^10,000 = 2^40,000
Miserably, I forgot some of the numbers. So, before moving on further, I will add it below.
(280) hexadecimal-guppyding = 16^100 = 2^400 (also hexadecimal-googol, binary-ogolding)
(281) hexadecimal-gogolding = 16^250 = 2^1000 (also binary-googolchime)
(282) hexadecimal-ogolding = 16^400 = 2^1600
(283) hexadecimal-googolding = 16^500 = 2^2000
...
(284) hexadecimal-guppychime = 16^200 = 2^800
(285) hexadecimal-gogolchime = 16^500 = 2^2000 (also (283) hexadecimal-googolding)
(286) hexadecimal-ogolchime = 16^800 = 2^3200
(287) hexadecimal-googolchime = 16^1000 = 2^4000
...
(288) binary-ogolding = 2^400
(289) binary-ogolchime = 2^800
...
(290) octal-ogolding = 8^400 = 2^1200
(291) octal-ogolchime = 8^800 = 2^2400
...
(292) binary-guppybell = 2^1000 (also binary-googolchime)
(293) binary-gogolbell = 2^2500 (also (259) binary-minnowtoll)
(294) binary-ogolbell = 2^4000 (also (287) hexadecimal-googolchime)
...
(295) octal-guppybell = 8^1000 = 2^3000 (also octal-googolchime, (232) hexadecimal-lightweight-chime)
(296) octal-gogolbell = 8^2500 = 2^7500 (also (261) octal-minnowtoll, (269) binary-lightweight-toll)
(297) octal-ogolbell = 8^4000 = 2^12,000
...
(298) hexadecimal-guppybell = 16^1000 = 2^4000 (also (287) hexadecimal-googolchime, (294) binary-ogolbell)
(299) hexadecimal-gogolbell = 16^2500 = 2^10,000 (also (263) hexadecimal-minnowtoll, (271) binary-googoltoll)
(300) hexadecimal-ogolbell = 16^4000 = 2^16,000
Completing up with toll...
(301) binary-guppytoll = 2^2000 (also (283) hexadecimal-googolding, (285) hexadecimal-gogolchime)
(302) binary-gogoltoll = 2^5000 (also (240) hexadecimal-minnowbell, (248) binary-googolbell)
(303) binary-ogoltoll = 2^8000
...
(304) octal-guppytoll = 8^2000 = 2^6000
(305) octal-gogoltoll = 8^5,000 = 2^15,000 (also (252) octal-googolbell, (254) hexadecimal-lightweight-bell)
(306) octal-ogoltoll = 8^8000 = 2^24,000
...
(307) hexadecimal-guppytoll = 16^2000 = 2^8000 (also (303) binary-ogoltoll)
(308) hexadecimal-gogoltoll = 16^5000 = 2^20,000 (also (256) hexadecimal-googolbell)
(309) hexadecimal-ogoltoll = 16^8000 = 2^32,000
And now, the moment we all being waiting for! Since both Saibian and DLM did not coin other modifiers, I will coin it to fill in the gaps. The first suffix modifier is "-ring" which multiplies the base value by 500. Without further ado, let's enjoy our googolism adventure!
I will sort by the original names.
(310) guppyring = 10^10,000 (also googoltoll)
(311) binary-guppyring = 2^10,000 (also (271) binary-googoltoll, (263) hexadecimal-minnowtoll)
(312) octal-guppyring = 8^10,000 = 2^30,000 (also (275) octal-googoltoll, (277) hexadecimal-lightweight-toll)
(313) hexadecimal-guppyring = 16^10,000 = 2^40,000 (also (279) hexadecimal-googoltoll)
...
(314) minnowring = 10^12,500
(315) binary-minnowring = 2^12,500
(316) octal-minnowring = 8^12,500 = 2^37,500
(317) hexadecimal-minnowring = 16^12,500 = 2^50,000
...
(318) gobyring = 10^17,500
(319) binary-gobyring = 2^17,500
(320) octal-gobyring = 8^17,500 = 2^52,500
(321) hexadecimal-gobyring = 16^17,500 = 2^70,000
...
(322) gogolring = 10^25,000
(323) binary-gogolring = 2^25,000
(324) octal-gogolring = 8^25,000 = 2^75,000
(325) hexadecimal-gogolring = 16^25,000 = 2^100,000
...
(326) prawn-ring = 10^32,500
(327) binary-prawn-ring = 2^32,500
(328) octal-prawn-ring = 8^32,500 = 2^97,500
(329) hexadecimal-prawn-ring = 16^32,500 = 2^130,000
...
(330) lightweight-ring = 10^37,500
(331) binary-lightweight-ring = 2^37,500 (also (316) octal-minnowring)
(332) octal-lightweight-ring = 8^37,500 = 2^112,500
(333) hexadecimal-lightweight-ring = 16^37,500 = 2^150,000
...
(334) ogolring = 10^40,000
(335) binary-ogolring = 2^40,000
(336) octal-ogolring = 8^40,000 = 2^120,000
(337) hexadecimal-ogolring = 16^40,000 = 2^160,000
...
(338) twerpuloid-ring = 10^42,500
(339) binary-twerpuloid-ring = 2^42,500
(340) octal-twerpuloid-ring = 8^42,500 = 2^127,500
(341) hexadecimal-twerpuloid-ring = 16^42,500 = 2^170,000
...
(342) googolring = 10^50,000
(343) binary-googolring = 2^50,000
(344) octal-googolring = 8^50,000 = 2^150,000 (also (333) hexadecimal-lightweight-ring)
(345) hexadecimal-googolring = 16^50,000 = 2^200,000
Wait... now what? Back to normal, Beat the gong, as the -gong suffix steps in!
guppygong = 10^20,000
(346) binary-guppygong = 2^20,000 (also (256) hexadecimal-googolbell, (308) hexadecimal-gogoltoll)
(347) octal-guppygong = 8^20,000 = 2^60,000
(348) hexadecimal-guppygong = 16^20,000 = 2^80,000
...
(349) minnowgong = 10^25,000 (also (322) gogolring)
(350) binary-minnowgong = 2^25,000 (also (323) binary-gogolring)
(351) octal-minnowgong = 8^25,000 = 2^75,000 (also (324) octal-gogolring)
(352) hexadecimal-minnowgong = 16^25,000 = 2^100,000 (also (325) hexadecimal-gogolring)
...
(353) gobygong = 10^35,000
(354) binary-gobygong = 2^35,000
(355) octal-gobygong = 8^35,000 = 2^105,000
(356) hexadecimal-gobygong = 16^35,000 = 2^140,000
...
gogolgong = 10^50,000 = E50,000
(357) binary-gogolgong = 2^50,000 (also (343) binary-googolring)
(358) octal-gogolgong = 8^50,000 = 2^150,000 (also (333) hexadecimal-lightweight-ring, (344) octal-googolring)
(359) hexadecimal-gogolgong = 16^50,000 = 2^200,000 (also (345) hexadecimal-googolring)
...
(360) prawn-gong = 10^65,000 = E65,000
(361) binary-prawn-gong = 2^65,000
(362) octal-prawn-gong = 8^65,000 = 2^195,000
(363) hexadecimal-prawn-gong = 16^65,000 = 2^260,000
...
(364) lightweight-gong = 10^75,000 = E75,000
(365) binary-lightweight-gong = 2^75,000
(366) octal-lightweight-gong = 8^75,000 = 2^225,000
(367) hexadecimal-lightweight-gong = 16^75,000 = 2^300,000
...
ogolgong = 10^80,000
(368) binary-ogolgong = 2^80,000
(369) octal-ogolgong = 8^80,000 = 2^240,000
(370) hexadecimal-ogolgong = 16^80,000 = 2^320,000
...
(371) twerpuloid-gong = 10^85,000 = E85,000
(372) binary-twerpuloid-gong = 2^85,000
(373) octal-twerpuloid-gong = 8^85,000 = 2^255,000
(374) hexadecimal-twerpuloid-gong = 16^85,000 = 2^340,000
...
**googolgong = 10^100,000 = E100,000
(375) binary-googolgong = 2^100,000 (also (325) hexadecimal-gogolring, (352) hexadecimal-minnowgong)
(376) octal-googolgong = 8^100,000 = 2^300,000 (also (367) hexadecimal-lightweight-gong = 16^75,000)
(377) hexadecimal-googolgong = 16^100,000 = 2^400,000
Now, the 2nd suffix, "-clang". It multiplies the base value by 5000.
(378) guppyclang = 10^100,000 (also googolgong)
(379) binary-guppyclang = 2^100,000 (also (325) hexadecimal-gogolring, (352) hexadecimal-minnowgong, (375) binary-googolgong)
(380) octal-guppyclang = 8^100,000 = 2^300,000 (also (367) hexadecimal-lightweight-gong = 16^75,000, (376) octal-googolgong)
(381) hexadecimal-guppyclang = 16^100,000 = 2^400,000 (also (377) hexadecimal-googolgong)
...
(382) minnowclang = 10^125,000
(383) binary-minnowclang = 2^125,000
(384) octal-minnowclang = 8^125,000 = 2^375,000
(385) hexadecimal-minnowclang = 16^125,000 = 2^500,000
...
(386) gobyclang = 10^175,000
(387) binary-gobyclang = 2^175,000
(388) octal-gobyclang = 8^175,000 = 2^525,000
(389) hexadecimal-gobyclang = 16^175,000 = 2^700,000
...
(390) gogolclang = 10^250,000
(391) binary-gogolclang = 2^250,000
(392) octal-gogolclang = 8^250,000 = 2^750,000
(393) hexadecimal-gogolclang = 16^250,000 = 2^1,000,000
...
(394) prawn-clang = 10^325,000
(395) binary-prawn-clang = 2^325,000
(396) octal-prawn-clang = 8^325,000 = 2^975,000
(397) hexadecimal-prawn-clang = 16^325,000 = 2^1,300,000
...
(398) lightweight-clang = 10^375,000
(399) binary-lightweight-clang = 2^375,000 (also (384) octal-minnowclang)
(400) octal-lightweight-clang = 8^375,000 = 2^1,125,000
(401) hexadecimal-lightweight-clang = 16^375,000 = 2^1,500,000
...
(402) ogolclang = 10^400,000
(403) binary-ogolclang = 2^400,000
(404) octal-ogolclang = 8^400,000 = 2^1,200,000
(405) hexadecimal-ogolclang = 16^400,000 = 2^1,600,000
...
(406) twerpuloid-clang = 10^425,000
(407) binary-twerpuloid-clang = 2^425,000
(408) octal-twerpuloid-clang = 8^425,000 = 2^1,275,000
(409) hexadecimal-twerpuloid-clang = 16^425,000 = 2^1,700,000
...
(410) googolclang = 10^500,000
(411) binary-googolclang = 2^500,000
(412) octal-googolclang = 8^500,000 = 2^1,500,000 (also (401) hexadecimal-lightweight-clang)
(413) hexadecimal-googolclang = 16^500,000 = 2^2,000,000
So now, we all know the point, -(n)gong multiplies the base value by 10^3n, -(n)lang multiplies the base value by 5*10^3n. For example, -bong (2 gongs) multiplies the base value by 10^6. I will combine into multiple parts, but this time, no base modifiers yet.
guppybong = 10^20,000,000
(414) minnowbong = 10^25,000,000 (slightly larger than the largest known prime number)
(415) gobybong = 10^35,000,000
gogolbong = 10^50,000,000
(416) prawn-bong = 10^65,000,000
(417) lightweight-bong = 10^75,000,000
ogolbong = 10^80,000,000
(418) twerpuloid-bong = 10^85,000,000
googolbong = 10^100,000,000
This new modifier "-blang" multiplies the base value by 5,000,000. (Instead of using -bang, the suffix used for factorial)
(419) guppyblang = 10^100,000,000 (also googolbong)
(420) minnowblang = 10^125,000,000
(421) gobyblang = 10^175,000,000
(422) gogolblang = 10^250,000,000
(423) prawn-blang = 10^325,000,000
(424) lightweight-blang = 10^375,000,000
(425) ogolblang = 10^400,000,000
(426) twerpuloid-blang = 10^425,000,000
(427) googolblang = 10^500,000,000
...
guppythrong = 10^20,000,000,000
(428) minnowthrong = 10^25,000,000,000
(429) gobythrong = 10^35,000,000,000
gogolthrong = 10^50,000,000,000
(430) prawn-throng = 10^65,000,000,000
(431) lightweight-throng = 10^75,000,000,000
ogolthrong = 10^80,000,000,000
(432) twerpuloid-throng = 10^85,000,000,000
googolthrong = 10^100,000,000,000 = EE11 = E11#2
...
(433) guppythrang = 10^100,000,000,000 (also googolthrong) = EE11 = E11#2
(434) minnowthrang = 10^125,000,000,000
(435) gobythrang = 10^175,000,000,000
(436) gogolthrang = 10^250,000,000,000
(437) prawn-thrang = 10^325,000,000,000
(438) lightweight-thrang = 10^375,000,000,000
(439) ogolthrang = 10^400,000,000,000
(440) twerpuloid-thrang = 10^425,000,000,000
(441) googolthrang = 10^500,000,000,000
...
The suffix -gandingan comes from the instrument of a gandingan which has 4 gongs. So, it multiplies the base value by 10^12.
guppygandingan = 10^(2*10^13)
(442) minnowgandingan = 10^(2.5*10^13)
(443) gobygandingan = 10^(3.5*10^13)
gogolgandingan = 10^(5*10^13)
(444) prawn-gandingan = 10^(6.5*10^13)
(445) lightweight-gandingan = 10^(7.5*10^13)
ogolgandingan = 10^(8*10^13)
(446) twerpuloid-gandingan = 10^(8.5*10^13)
googolgandingan = 10^10^14 = EE14 = E14#2
To wrap up the series, we push the -gong suffix to the limits. Note that I will only coin some numbers that are not available in either Saibian, or DLM's site.
Firstly, a -gong number that is within the boundaries of googolplex,
(447) googolduotrigintigong = EE98 = 10^10^98
googolplex = EE100 = 10^10^100
(448) googoltretrigintigong = EE101 = 10^10^101
Now, let's finish the -gong series with SI prefix and other prefixes: Entering class 4 numbers...
(449) googolmyriagong = EE30,002 = 10^10^30,002 (also googoldecimilligong)
(450) googolmegagong = EE3,000,002 = 10^10^3,000,002 (also googolmilli-milligong)
(451) googolgigagong = EE3,000,000,002 = 10^10^3,000,000,002
(452) googolteragong = EE3,000,000,000,002 = 10^10^3,000,000,000,002 = 10^10^(3*10^12+2)
(453) googolpetagong = EE(3E15+2) = 10^10^(3*10^15+2)
(454) googolexagong = EE(3E18+2) = 10^10^(3*10^18+2)
(455) googolzettagong = EE(3E21+2) = 10^10^(3*10^21+2)
(456) googolyottagong = EE(3E24+2) = 10^10^(3*10^24+2)
The last 2 prefixes are new, ronna- and -quetta. They were introduced in November 2022.
(457) googolronnagong = EE(3E27+2) = 10^10^(3*10^27+2)
*also called (458) googolxennagong
(459) googolquettagong = EE(3E30+2) = 10^10^(3*10^30+2)
*also called (460) googoldakagong
It's time to push the prefixes to the limits by applying Bowers' polytope prefixes.
(461) googolhendakagong = EE(3E33+2) = 10^10^(3*10^33+2)
"googolhendakagong" is the closest milestone -gong number to the first Skewes number.
(462) googoldokagong = EE(3E36+2) = 10^10^(3*10^36+2)
(463) googoltredakagong = EE(3E39+2) = 10^10^(3*10^39+2)
(464) googoltedakagong = EE(3E42+2) = 10^10^(3*10^42+2)
(465) googolpedakagong = EE(3E45+2) = 10^10^(3*10^45+2)
(466) googolexdakagong = EE(3E48+2) = 10^10^(3*10^48+2)
(467) googolzedakagong = EE(3E51+2) = 10^10^(3*10^51+2)
(468) googolyodakagong = EE(3E54+2) = 10^10^(3*10^54+2)
(469) googolnedakagong = EE(3E57+2) = 10^10^(3*10^57+2)
(470) googolikagong = EE(3E60+2) = 10^10^(3*10^60+2)
(471) googoltrakagong = EE(3E90+2) = 10^10^(3*10^90+2)
(472) googoltekagong = EE(3E120+2) = 10^10^(3*10^120+2)
(473) googolpekagong = EE(3E150+2) = 10^10^(3*10^150+2)
(474) googolexakagong = EE(3E180+2) = 10^10^(3*10^180+2)
(475) googolzakagong = EE(3E210+2) = 10^10^(3*10^210+2)
(476) googolyokagong = EE(3E240+2) = 10^10^(3*10^240+2)
(477) googolnekagong = EE(3E270+2) = 10^10^(3*10^270+2)
(478) googolhotagong = EE(3E300+2) = 10^10^(3*10^300+2)
(479) googolbotagong = EE(3E600+2) = 10^10^(3*10^600+2)
(480) googoltrotagong = EE(3E900+2) = 10^10^(3*10^900+2)
(481) googoltotagong = EE(3E1200+2) = 10^10^(3*10^1200+2)
(482) googolpotagong = EE(3E1500+2) = 10^10^(3*10^1500+2)
(483) googolexotagong = EE(3E1800+2) = 10^10^(3*10^1800+2)
(484) googolzotagong = EE(3E2100+2) = 10^10^(3*10^2100+2)
(485) googolyootagong = EE(3E2400+2) = 10^10^(3*10^2400+2)
(486) googolnotagong = EE(3E2700+2) = 10^10^(3*10^2700+2)
...
(487) googolkalagong = EE(3E3000+2) = 10^10^(3*10^3000+2)
(488) googoldalagong = EE(3E6000+2) = 10^10^(3*10^6000+2)
(489) googoldakalagong = EE(3E30,000+2) = 10^10^(3*10^30,000+2)
(490) googolhokalagong = EE(3E300,000+2) = 10^10^(3*10^300,000+2)
...
(491) googolmejagong = EE(3E3,000,000+2) = 10^10^(3*10^3,000,000+2)
(492) googolgijagong = EE(3E3,000,000,000+2) = 10^10^(3*10^3,000,000,000+2)
(493) googolastigong = EE(3E3E12+2) = 10^10^(3*10^3*10^12+2)
(494) googolunigong = EE(3E3E15+2) = 10^10^(3*10^3*10^15+2)
(495) googolfermigong = EE(3E3E18+2) = 10^10^(3*10^3*10^18+2)
(496) googoljovigong = EE(3E3E21+2) = 10^10^(3*10^3*10^21+2)
(497) googolsoligong = EE(3E3E24+2) = 10^10^(3*10^3*10^24+2)
(498) googolbetigong = EE(3E3E27+2) = 10^10^(3*10^3*10^27+2)
(499) googolglocigong = EE(3E3E30+2) = 10^10^(3*10^3*10^30+2)
(500) googolgaxigong = EE(3E3E33+2) = 10^10^(3*10^3*10^33+2)
500 googolisms and counting, that's going to beat the original Guppy Regiment numbers!
(501) googolsupigong = EE(3E3E36+2) = 10^10^(3*10^3*10^36+2)
(502) googolversigong = EE(3E3E39+2) = 10^10^(3*10^3*10^39+2)
(503) googolmultigong = EE(3E3E42+2) = 10^10^(3*10^3*10^42+2)
Wow, when appending polytope prefixes to the googol-n-gong, it will be on par with Bowers' -illions, albeit slightly larger. For example,
megillion < googolmegagong
But before moving on to the next section, I will coin a "googol-n-gong" googolism that is close to googolduplex (10^10^10^100):
(504) googoltractragong = EE(3E99+2) = 10^10^(3*10^99+2)
Finally, reaching the number of googolisms in the original Guppy regiment! Now moving!
Obviously, n-plex means 10^n, extrapolated from googolplex, which is 10^googol. Let's add more -plex numbers here by applying Latin numbers, and continuing with the polytopes up to the multi-. The first 5 -plex terms are listed, but without being numbered, as they are existing googolisms. These numbers will leave others in the dust!!
Firstly, guppy series:
guppyplex = 10^10^20 = E20#2
guppyduplex = 10^10^10^20 = E20#3
guppytriplex = 10^10^10^10^20 = E20#4
guppyquadriplex = 10^10^10^10^10^20 = E20#5
guppyquintiplex = 10^10^10^10^10^10^20 = E20#6
...
guppydeciplex = E20#11
...
guppyvigintiplex = E20#21
...
guppycentiplex = E20#101
(505) guppyuncentiplex = E20#102
(506) guppyducentiplex = E20#201
...
(507) guppyquingentiplex = E20#501
...
guppymilliplex = E20#1001
(508) guppymyriaplex = E20#10001
(509) guppymegaplex = E20#1,000,001 (also guppymilli-milliplex)
(510) guppygigaplex = E20#1,000,000,001
(511) guppyteraplex = E20#1,000,000,000,001 = E20#(10^12+1)
(512) guppypetaplex = E20#(10^15+1)
(513) guppyexaplex = E20#(10^18+1)
(514) guppyzettaplex = E20#(10^21+1)
(515) guppy-yottaplex = E20#(10^24+1)
...
(516) guppyronnaplex = E20#(10^27+1)
*also (517) guppyxennaplex
(518) guppyquettaplex = E20#(10^30+1) = E20#(E30+1)
*also (519) guppydakaplex
...
(520) guppy-ikaplex = E20#(E60+1)
...
(521) guppyhotaplex = E20#(E300+1)
(522) guppybotaplex = E20#(E600+1)
...
(523) guppykalaplex = E20#(E3000+1)
(524) guppymejaplex = E20#(E3,000,000+1)
(525) guppygijaplex = E20#(E3,000,000,000+1)
...
(526) guppymultiplex = E20#(E3E42+1)
For base 2, the -bit suffix is added, and googolplexibit is defined as 2^2^100, to make it consistent. These numbers are approximately E30#(n+1) for every googol-n-plexibit numbers.
googolplexibit = 2^2^100 = 2^100#2
googolduplexibit = 2^2^2^100 = 2^100#3
googoltriplexibit = 2^2^2^2^100 = 2^100#4
googolquadriplexibit = 2^2^2^2^2^100 = 2^100#5
googolquintiplexibit = 2^2^2^2^2^2^100 = 2^100#6
...
googoldeciplexibit = 2^100#11
...
googolvigintiplexibit = 2^100#21
...
googolcentiplexibit = 2^100#101
(527) googoluncentiplexibit = 2^100#102
(528) googolducentiplexibit = 2^100#201
...
(529) googolquingentiplexibit = 2^100#501
...
googolmilliplexibit = 2^100#1001
(530) googolmyriaplexibit = 2^100#10001
(531) googolmegaplexibit = 2^100#1,000,001 (also googolmilli-milliplexibit)
(532) googolgigaplexibit = 2^100#1,000,000,001
(533) googolteraplexibit = 2^100#1,000,000,000,001 = 2^100#(10^12+1)
(534) googolpetaplexibit = 2^100#(10^15+1)
(535) googolexaplexibit = 2^100#(10^18+1)
(536) googolzettaplexibit = 2^100#(10^21+1)
(537) googolyottaplexibit = 2^100#(10^24+1)
...
(538) googolronnaplexibit = 2^100#(10^27+1)
*also (539) googolxennaplexibit
(540) googolquettaplexibit = 2^100#(10^30+1) = 2^100#(E30+1)
*also (541) googoldakaplexibit
...
(542) googol-ikaplexibit = 2^100#(E60+1)
...
(543) googolhotaplexibit = 2^100#(E300+1)
(544) googolbotaplexibit = 2^100#(E600+1)
...
(545) googolkalaplexibit = 2^100#(E3000+1)
(546) googolmejaplexibit = 2^100#(E3,000,000+1)
(547) googolgijaplexibit = 2^100#(E3,000,000,000+1)
...
(548) googolmultiplexibit = 2^100#(E3E42+1)
The next number in the list is gogol-n-plex.
gogolplex = 10^10^50 = E50#2
gogolduplex = 10^10^10^50 = E50#3
gogoltriplex = 10^10^10^10^50 = E50#4
gogolquadriplex = 10^10^10^10^10^50 = E50#5
gogolquintiplex = 10^10^10^10^10^10^50 = E50#6
...
gogoldeciplex = E50#11
...
gogolvigintiplex = E50#21
...
gogolcentiplex = E50#101
(549) gogoluncentiplex = E50#102
(550) gogolducentiplex = E50#201
...
(551) gogolquingentiplex = E50#501
...
gogolmilliplex = E50#1001
(552) gogolmyriaplex = E50#10001
(553) gogolmegaplex = E50#1,000,001 (also gogolmilli-milliplex)
(554) gogolgigaplex = E50#1,000,000,001
(555) gogolteraplex = E50#1,000,000,000,001 = E50#(10^12+1)
(556) gogolpetaplex = E50#(10^15+1)
(557) gogolexaplex = E50#(10^18+1)
(558) gogolzettaplex = E50#(10^21+1)
(559) gogolyottaplex = E50#(10^24+1)
...
(560) gogolronnaplex = E50#(10^27+1)
*also (561) gogolxennaplex
(562) gogolquettaplex = E50#(10^30+1) = E50#(E30+1)
*also (563) gogoldakaplex
...
(564) gogol-ikaplex = E50#(E60+1)
...
(565) gogolhotaplex = E50#(E300+1)
(566) gogolbotaplex = E50#(E600+1)
...
(567) gogolkalaplex = E50#(E3000+1)
(568) gogolmejaplex = E50#(E3,000,000+1)
(569) gogolgijaplex = E50#(E3,000,000,000+1)
...
(570) gogolmultiplex = E50#(E3E42+1)
For base 8, the -byte suffix is added, and googolplexibyte is defined as 8^8^100, to make it consistent. These numbers are approximately E91#(n+1) for every googol-n-plexibyte numbers.
googolplexibyte = 8^8^100 = 8^100#2 ~ E91#2
googolduplexibyte = 8^8^8^100 = 8^100#3 ~ E91#3
googoltriplexibyte = 8^8^8^8^100 = 8^100#4
googolquadriplexibyte = 8^8^8^8^8^100 = 8^100#5
googolquintiplexibyte = 8^8^8^8^8^8^100 = 8^100#6
...
googoldeciplexibyte = 8^100#11
...
googolvigintiplexibyte = 8^100#21
...
googolcentiplexibyte = 8^100#101
(571) googoluncentiplexibyte = 8^100#102
(572) googolducentiplexibyte = 8^100#201
...
(573) googolquingentiplexibyte = 8^100#501
...
googolmilliplexibyte = 8^100#1001
(574) googolmyriaplexibyte = 8^100#10001
(575) googolmegaplexibyte = 8^100#1,000,001 (also googolmilli-milliplexibyte)
(576) googolgigaplexibyte = 8^100#1,000,000,001
(577) googolteraplexibyte = 8^100#1,000,000,000,001 = 8^100#(10^12+1)
(578) googolpetaplexibyte = 8^100#(10^15+1)
(579) googolexaplexibyte = 8^100#(10^18+1)
(580) googolzettaplexibyte = 8^100#(10^21+1)
(581) googolyottaplexibyte = 8^100#(10^24+1)
...
(582) googolronnaplexibyte = 8^100#(10^27+1)
*also (583) googolxennaplexibyte
(584) googolquettaplexibyte = 8^100#(10^30+1) = 8^100#(E30+1)
*also (585) googoldakaplexibyte
...
(586) googol-ikaplexibyte = 8^100#(E60+1)
...
(587) googolhotaplexibyte = 8^100#(E300+1)
(588) googolbotaplexibyte = 8^100#(E600+1)
...
(589) googolkalaplexibyte = 8^100#(E3000+1)
(590) googolmejaplexibyte = 8^100#(E3,000,000+1)
(591) googolgijaplexibyte = 8^100#(E3,000,000,000+1)
...
(592) googolmultiplexibyte = 8^100#(E3E42+1)
Finally, we are reaching the googol-n-plex series.
***googolplex = 10^10^100 = E100#2 (*** denotes extremely important milestone)
**googolduplex = 10^10^10^100 = E100#3 (** denotes very important milestone)
googoltriplex = 10^10^10^10^100 = E100#4
googolquadriplex = 10^10^10^10^10^100 = E100#5
googolquintiplex = 10^10^10^10^10^10^100 = E100#6
...
googoldeciplex = E100#11
...
googolvigintiplex = E100#21
...
googolcentiplex = E100#101
(593) googoluncentiplex = E100#102
(594) googolducentiplex = E100#201
...
(595) googolquingentiplex = E100#501
...
googolmilliplex = E100#1001
(596) googolmyriaplex = E100#10001
...
Note: Numbers from googolmegaplex to googolyottaplex already coined, so, they will not be numbered.
googolmegaplex = E100#1,000,001 (also googolmilli-milliplex)
googolgigaplex = E100#1,000,000,001
googolteraplex = E100#1,000,000,000,001 = E100#(10^12+1)
googolpetaplex = E100#(10^15+1)
googolexaplex = E100#(10^18+1)
googolzettaplex = E100#(10^21+1)
googolyottaplex = E100#(10^24+1)
...
(597) googolronnaplex = E100#(10^27+1)
*also googolxennaplex
(598) googolquettaplex = E100#(10^30+1) = E100#(E30+1)
*also (599) googoldakaplex or googolvekaplex
...
(600) googol-ikaplex = E100#(E60+1)
...
(601) googolhotaplex = E100#(E300+1)
(602) googolbotaplex = E100#(E600+1)
...
(603) googolkalaplex = E100#(E3000+1)
(604) googolmejaplex = E100#(E3,000,000+1)
(605) googolgijaplex = E100#(E3,000,000,000+1)
...
(606) googolmultiplex = E100#(E3E42+1)
Next, base 16 (hexadecimal) version of googol-n-plex. Here, we have a prefix "hexadecimal" to append to googol-n-plex. These numbers are approximately E121#(n+1) for every hexadecimal-googol-n-plex numbers.
hexadecimal-googolplex = 16^16^100 = 16^100#2 ~ E121#2
hexadecimal-googolduplex = 16^16^16^100 = 16^100#3 ~ E121#3
(607) hexadecimal-googoltriplex = 16^16^16^16^100 = 16^100#4
(608) hexadecimal-googolquadriplex =16^16^16^16^16^100 = 16^100#5
(609) hexadecimal-googolquintiplex = 16^16^16^16^16^16^100 = 16^100#6
...
(610) hexadecimal-googoldeciplex = 16^100#11
...
(611) hexadecimal-googolvigintiplex = 16^100#21
...
(612) hexadecimal-googolcentiplex = 16^100#101
(613) hexadecimal-googoluncentiplex = 16^100#102
...
(614) hexadecimal-googolmilliplex = 16^100#1001
(615) hexadecimal-googolmyriaplex = 16^100#10001
(616) hexadecimal-googolmegaplex = 16^100#1,000,001 (*also (617) hexadecimal-googolmilli-milliplex)
(618) hexadecimal-googolgigaplex = 16^100#1,000,000,001
(619) hexadecimal-googolteraplex = 16^100#1,000,000,000,001 = 16^100#(10^12+1)
(620) hexadecimal-googolpetaplex = 16^100#(10^15+1)
(621) hexadecimal-googolexaplex = 16^100#(10^18+1)
(622) hexadecimal-googolzettaplex = 16^100#(10^21+1)
(623) hexadecimal-googolyottaplex = 16^100#(10^24+1)
...
(624) hexadecimal-googolronnaplex = 16^100#(10^27+1)
*also (625) hexadecimal-googolxennaplex
(626) hexadecimal-googolquettaplex = 16^100#(10^30+1) = 16^100#(E30+1)
*also (627) hexadecimal-googoldakaplex
...
(628) hexadecimal-googol-ikaplex = 16^100#(E60+1)
...
(629) hexadecimal-googolhotaplex = 16^100#(E300+1)
(630) hexadecimal-googolbotaplex = 16^100#(E600+1)
...
(631) hexadecimal-googolkalaplex = 16^100#(E3000+1)
(632) hexadecimal-googolmejaplex = 16^100#(E3,000,000+1)
(633) hexadecimal-googolgijaplex = 16^100#(E3,000,000,000+1)
...
(634) hexadecimal-googolmultiplex = 16^100#(E3E42+1)
Moving on... next one is appending -chime to googol-n-plex. Instead of googolchime-n-plex, which does not sound interesting, the suffix -chime is placed after the plex (with the additional "i").
**googolplexichime = 10^10^1000 = E1000#2 (** denotes very important milestone)
*googolduplexichime = 10^10^10^1000 = E1000#3
googoltriplexichime = 10^10^10^10^1000 = E1000#4
googolquadriplexichime = 10^10^10^10^10^1000 = E1000#5
googolquintiplexichime = 10^10^10^10^10^10^1000 = E1000#6
...
googoldeciplexichime = E1000#11
...
googolvigintiplexichime = E1000#21
...
googolcentiplexichime = E1000#101
(635) googoluncentiplexichime = E1000#102
(636) googolducentiplexichime = E1000#201
...
(637) googolquingentiplexichime = E1000#501
...
googolmilliplexichime = E1000#1001
(638) googolmyriaplexichime = E1000#10001
...
(639) googolmegaplexichime = E1000#1,000,001 (also googolmilli-milliplexichime)
(640) googolgigaplexichime = E1000#1,000,000,001
(641) googolteraplexichime = E1000#1,000,000,000,001 = E1000#(10^12+1)
(642) googolpetaplexichime = E1000#(10^15+1)
(643) googolexaplexichime = E1000#(10^18+1)
(644) googolzettaplexichime = E1000#(10^21+1)
(645) googolyottaplexichime = E1000#(10^24+1)
...
(646) googolronnaplexichime = E1000#(10^27+1)
*also (647) googolxennaplexichime
(648) googolquettaplexichime = E1000#(10^30+1) = E1000#(E30+1)
*also (649) googoldakaplexichime or (650) googolvekaplexichime
...
(651) googol-ikaplexichime = E1000#(E60+1)
...
(652) googolhotaplexichime = E1000#(E300+1)
(653) googolbotaplexichime = E1000#(E600+1)
...
(654) googolkalaplexichime = E1000#(E3000+1)
(655) googolmejaplexichime = E1000#(E3,000,000+1)
(656) googolgijaplexichime = E1000#(E3,000,000,000+1)
...
(657) googolmultiplexichime = E1000#(E3E42+1)
The series goes on with googoltoll series:
**googolplexitoll = 10^10^10,000 = E10000#2 (** denotes very important milestone)
*googolduplexitoll = 10^10^10^10,000 = E10000#3
googoltriplexitoll = 10^10^10^10^10,000 = E10000#4
googolquadriplexitoll = 10^10^10^10^10^10,000 = E10000#5
googolquintiplexitoll = 10^10^10^10^10^10^10,000 = E10000#6
...
googoldeciplexitoll = E10000#11
...
googolvigintiplexitoll = E10000#21
...
googolcentiplexitoll = E10000#101
(658) googoluncentiplexitoll = E10000#102
(659) googolducentiplexitoll = E10000#201
...
(660) googolquingentiplexitoll = E10000#501
...
googolmilliplexitoll = E10000#1001
(661) googolmyriaplexitoll = E10000#10,0001
...
(662) googolmegaplexitoll = E10000#1,000,001 (also googolmilli-milliplexitoll)
(663) googolgigaplexitoll = E10000#1,000,000,001
(664) googolteraplexitoll = E10000#1,000,000,000,001 = E10000#(10^12+1)
(665) googolpetaplexitoll = E10000#(10^15+1)
(666) googolexaplexitoll = E10000#(10^18+1)
(667) googolzettaplexitoll = E10000#(10^21+1)
(668) googolyottaplexitoll = E10000#(10^24+1)
...
(669) googolronnaplexitoll = E10000#(10^27+1)
*also (670) googolxennaplexitoll
(671) googolquettaplexitoll = E10000#(10^30+1) = E10000#(E30+1)
*also (672) googoldakaplexitoll or (673) googolvekaplexitoll
...
(674) googol-ikaplexitoll = E10000#(E60+1)
...
(675) googolhotaplexitoll = E10000#(E300+1)
(676) googolbotaplexitoll = E10000#(E600+1)
...
(677) googolkalaplexitoll = E10000#(E3000+1)
(678) googolmejaplexitoll = E10000#(E3,000,000+1)
(679) googolgijaplexitoll = E10000#(E3,000,000,000+1)
...
(680) googolmultiplexitoll = E10000#(E3E42+1)
The series goes on with googoltoll series:
**googolplexigong = 10^10^100,000 = E100,000#2 (** denotes very important milestone)
*googolduplexigong = 10^10^10^100,000 = E100,000#3
googoltriplexigong = 10^10^10^10^100,000 = E100,000#4
googolquadriplexigong = 10^10^10^10^10^100,000 = E100,000#5
googolquintiplexigong = 10^10^10^10^10^10^100,000 = E100,000#6
...
googoldeciplexigong = E100,000#11
...
googolvigintiplexigong = E100,000#21
...
googolcentiplexigong = E100,000#101
(681) googoluncentiplexigong = E100,000#102
(682) googolducentiplexigong = E100,000#201
...
(683) googolquingentiplexigong = E100,000#501
...
googolmilliplexigong = E100,000#1001
(684) googolmyriaplexigong = E100,000#10,001
...
(685) googolmegaplexigong = E100,000#1,000,001 (also googolmilli-milliplexigong)
(686) googolgigaplexigong = E100,000#1,000,000,001
(687) googolteraplexigong = E100,000#1,000,000,000,001 = E100,000#(10^12+1)
(688) googolpetaplexigong = E100,000#(10^15+1)
(689) googolexaplexigong = E100,000#(10^18+1)
(690) googolzettaplexigong = E100,000#(10^21+1)
(691) googolyottaplexigong = E100,000#(10^24+1)
...
(692) googolronnaplexigong = E100,000#(10^27+1)
*also (693) googolxennaplexigong
(694) googolquettaplexigong = E100,000#(10^30+1) = E100,000#(E30+1)
*also (695) googoldakaplexigong or (696) googolvekaplexigong
...
(697) googol-ikaplexigong = E100,000#(E60+1)
...
(698) googolhotaplexigong = E100,000#(E300+1)
(699) googolbotaplexigong = E100,000#(E600+1)
...
(700) googolkalaplexigong = E100,000#(E3000+1)
(701) googolmejaplexigong = E100,000#(E3,000,000+1)
(702) googolgijaplexigong = E100,000#(E3,000,000,000+1)
...
(703) googolmultiplexigong = E100,000#(E3E42+1)
The next one, -bong.
googolplexibong = E100,000,000#2
googolduplexibong = E100,000,000#3
googoltriplexibong = E100,000,000#4
googolquadriplexibong = E100,000,000#5
googolquintiplexibong = E100,000,000#6
googoldeciplexibong = E100,000,000#11
...
googolcentiplexibong = E100,000,000#101
googolmilliplexibong = E100,000,000#1001
(704) googolmyriaplexibong = E100,000,000#10,001
(705) googolmegaplexibong = E100,000,000#1,000,001 (also googolmilli-milliplexibong)
(706) googolgigaplexibong = E100,000,000#1,000,000,001
(707) googolteraplexibong = E100,000,000#1,000,000,000,001 = E100,000,000#(10^12+1)
...
(708) googoldakaplexibong = E100,000,000#(10^30+1)
(709) googolkalaplexibong = E100,000,000#(E3000+1)
...
(710) googolmultiplexibong = E100,000,000#(E3E42+1)
It's -throng time!
googolplexithrong = E100,000,000,000#2
googolduplexithrong = E100,000,000,000#3
googoltriplexithrong = E100,000,000,000#4
googolquadriplexithrong = E100,000,000,000#5
googolquintiplexithrong = E100,000,000,000#6
googoldeciplexithrong = E100,000,000,000#11
...
googolcentiplexithrong = E100,000,000,000#101
googolmilliplexithrong = E100,000,000,000#1001
(711) googolmyriaplexithrong = E100,000,000,000#10,001
(712) googolmegaplexithrong = E100,000,000,000#1,000,001 (also googolmilli-milliplexithrong)
(713) googolgigaplexithrong = E100,000,000,000#1,000,000,001
(714) googolteraplexithrong = E100,000,000,000#1,000,000,000,001 = E100,000,000,000#(10^12+1)
...
(715) googoldakaplexithrong = E100,000,000,000#(10^30+1)
(716) googolkalaplexithrong = E100,000,000,000#(E3000+1)
...
(717) googolmultiplexithrong = E100,000,000,000#(E3E42+1)
To -gandingan... (4 gongs)...
googolplexigandingan = EE14#2
googolduplexigandingan = EE14#3
googoltriplexigandingan = EE14#4
(718) googolquadriplexigandingan = EE14#5
googoldeciplexigandingan = EE14#11
...
googolcentiplexigandingan = EE14#101
googolmilliplexigandingan = EE14#1001
(719) googolmyriaplexigandingan = EE14#10,001
(720) googolmegaplexigandingan = EE14#1,000,001 (also googolmilli-milliplexigandingan)
(721) googolgigaplexigandingan = EE14#1,000,000,001
...
(722) googoldakaplexigandingan = EE14#(10^30+1)
(723) googolkalaplexigandingan = EE14#(E3000+1)
...
(724) googolmultiplexigandingan = EE14#(E3E42+1)
Since most of the -eceton numbers (based off of 10^303, centillion) have been coined, I will coin some numbers that are not in the list.
eceton = centillion = 10^303
ecetonplex = E303#2 = 10^10^303
ecetonduplex = E303#3 = 10^10^10^303
...
ecetoncentiplex = E303#101
eceton-milliplex = E303#1001
(725) ecetonmyriaplex = E303#10001
(726) ecetonmegaplex = E303#1,000,001
(727) ecetongigaplex = E303#1,000,000,001
(728) ecetonteraplex = E303#(E12+1)
(729) ecetonpetaplex = E303#(E15+1)
(730) eceton-exaplex = E303#(E18+1)
(731) ecetonzettaplex = E303#(E21+1)
(732) ecetonyottaplex = E303#(E24+1)
(733) ecetonronnaplex = E303#(E27+1) (also (734) ecetonxennaplex)
(735) ecetonquettaplex = E303#(E30+1) (also (735) ecetonxennaplex, (736) ecetondakaplex)
...
(737) ecetonkalaplex = E303#(E3000+1)
(738) ecetonmejaplex = E303#(E3000000+1)
...
(739) ecetonmultiplex = E303#(E3E42+1)
Continuing onto -illiplexion series... Note: instead of using -illionplex, like millionplex, which does not sound good, that's why Saibian and DLM decided to reorder the roots. I will use Bowers' -illions to extend it.
milliplexion = E6#2 = 10^1,000,000
billiplexion = E9#2 = 10^1,000,000,000
trilliplexion = E12#2 = 10^1,000,000,000,000
...
decilliplexion = E33#2 = 10^10^33
vigintilliplexion = E63#2 = 10^10^63
trigintilliplexion = E93#2 = 10^10^93
...
(740) duotrigintilliplexion = E99#2 = 10^10^99 (closest -illiplexion to googolplex)
...
centilliplexion = E303#2 = 10^10^303 (also ecetonplex)
ducentilliplexion = E603#2 = 10^10^603
...
millilliplexion = E3003#2
(741) micrilliplexion = E3,000,003#2 (also milli-millilliplexion)
I filled in the gaps where DLM left off...
...
(742) nanilliplexion = E3,000,000,003#2
(743) picilliplexion = E(3E12+3)#2
(744) femtilliplexion = E(3E15+3)#2
(745) attilliplexion = E(3E18+3)#2
(746) zeptilliplexion = E(3E21+3)#2
(747) yoctilliplexion = E(3E24+3)#2
(748) rontilliplexion = E(3E27+3)#2 (also (749) xonilliplexion)
(750) quectilliplexion = E(3E30+3)#2 (also (751) vecilliplexion)
(752) mecilliplexion = E(3E33+3)#2 (close to the first Skewes number)
(753) duecilliplexion = E(3E36+3)#2
...
(754) icosilliplexion = E(3E60+3)#2
(755) triacontilliplexion = E(3E90+3)#2
...
For numbers closer to googolduplex...
(756) triotriacontilliplexion = E(3E99+3)#2
(757) tretriotriacontilliplexion = E(9E99+3)#2
(758) googolilliplexion = E(3E100+3)#2
...
Back to regular schemes...
(759) tetracontilliplexion = E(3E120+3)#2
(760) pentacontilliplexion = E(3E150+3)#2
...
(761) hectilliplexion = E(3E300+3)#2
(762) duohectilliplexion = E(6E300+3)#2
(763) mehectilliplexion = E(3E303+3)#2 (close to ecetonduplex)
(764) duehectilliplexion = E(3E306+3)#2
(765) vecehectilliplexion = E(3E330+3)#2
(766) icosehectilliplexion = E(3E360+3)#2
...
(767) dohectilliplexion = E(3E600+3)#2
(768) triahectilliplexion = E(3E900+3)#2
...
(769) killilliplexion = E(3E3000+3)#2
(770) micrekillilliplexion = E(3E6000+3)#2
(771) megilliplexion = E(3E3,000,000+3)#2
(772) gigilliplexion = E(3E3,000,000,000+3)#2
(773) terilliplexion = E(3E3E12+3)#2
(774) petilliplexion = E(3E3E15+3)#2
(775) exilliplexion = E(3E3E18+3)#2
(776) zettilliplexion = E(3E3E21+3)#2
(777) yottilliplexion = E(3E3E24+3)#2
(778) ronnilliplexion = E(3E3E27+3)#2 (or (779) xennilliplexion)
(780) quettilliplexion = E(3E3E30+3)#2 (or (781) dakilliplexion)
(782) hendilliplexion = E(3E3E33+3)#2
(783) dokilliplexion = E(3E3E36+3)#2
...
(784) ikilliplexion = E(3E3E60+3)#2
(785) ikenilliplexion = E(3E3E63+3)#2
(786) trakilliplexion = E(3E3E90+3)#2
(787) tekilliplexion = E(3E3E120+3)#2
(788) pekilliplexion = E(3E3E150+3)#2
...
(789) hotilliplexion = E(3E3E300+3)#2
(790) botilliplexion = E(3E3E600+3)#2
(791) trotilliplexion = E(3E3E900+3)#2
...
(792) kalilliplexion = E(3E3E3000+3)#2
(793) dakalilliplexion = E(3E3E30,000+3)#2
(794) mejilliplexion = E(3E3E3,000,000+3)#2
(795) gijilliplexion = E(3E3E3,000,000,000+3)#2
(796) astilliplexion = E(3E3E3E12+3)#2
...
(797) multilliplexion = E(3E3E3E42+3)#2
Before moving to -illiduplexion, I will coin some -illiplexion numbers that are close to Milestone numbers.
(798) trejilliplexion = E(3E3E9,000,000,000+3)#2 (close to pentalogue)
(799) tractrilliplexion = E(3E3E99+3)#2 (close to googoltriplex)
(800) hotenilliplexion = E(3E3E303+3)#2 (close to ecetontriplex)
...
-illiduplexion numbers
milliduplexion = E6#3 = 10^10^1,000,000
billiduplexion = E9#3 = 10^10^1,000,000,000
trilliduplexion = E12#3 = 10^10^1,000,000,000,000
...
decilliduplexion = E33#3 = 10^10^10^33 (close to 1st Skewes number)
vigintilliduplexion = E63#3 = 10^10^10^63
trigintilliduplexion = E93#3 = 10^10^10^93
...
(801) duotrigintilliduplexion = E99#3 = 10^10^10^99 (closest -illiduplexion to googolduplex)
...
centilliduplexion = E303#3 = 10^10^10^303 (also ecetonduplex)
(802) ducentilliplexion = E603#3 = 10^10^10^603
(803) trecentilliplexion = E903#3 = 10^10^10^903
...
(804) vigintitrecentilliplexion = E963#3 = 10^10^10^963 (closest -illiduplexion to the 2nd Skewes number)
...
millilliduplexion = E3003#3
(805) micrilliduplexion = E3,000,003#3 (also milli-millilliduplexion)
(806) nanilliduplexion = E3,000,000,003#3
(807) picilliduplexion = E(3E12+3)#3
(808) femtilliduplexion = E(3E15+3)#3
...
(809) vecilliduplexion = E(3E30+3)#3 (also (810) quectilliduplexion)
(811) mecilliduplexion = E(3E33+3)#3
(812) tetrecilliduplexion = E(3E42+3)#3 (closest -illiduplexion to multillion)
...
(813) icosilliduplexion = E(3E60+3)#3
(814) triacontilliduplexion = E(3E90+3)#3
(815) triotriacontilliduplexion = E(3E99+3)#3 (closest -illiduplexion to googoltriplex)
...
(816) hectilliduplexion = E(3E300+3)#3
(817) killilliduplexion = E(3E3000+3)#3
(818) megilliduplexion = E(3E3,000,000+3)#3
(819) gigilliduplexion = E(3E3,000,000,000+3)#3
...
(820) dakilliduplexion = E(3E3E30+3)#3 (or (821) quettilliduplexion)
(822) hotilliduplexion = E(3E3E300+3)#3
(823) kalilliduplexion = E(3E3E3000+3)#3
...
(824) multilliduplexion = E(3E3E3E42+3)#3
-illitriplexion reigns here.
(825) micrillitriplexion = E3,000,003#4 (also milli-millillitriplexion)
(826) nanillitriplexion = E3,000,000,003#4
...
(827) vecillitriplexion = E(3E30+3)#4
(828) hectillitriplexion = E(3E300+3)#4
...
(829) killillitriplexion = E(3E3000+3)#4
(830) megillitriplexion = E(3E3,000,000+3)#4
...
(831) dakillitriplexion = E(3E3E30+3)#4 (or (832) quettillitriplexion)
(833) hotillitriplexion = E(3E3E300+3)#4
(834) kalillitriplexion = E(3E3E3000+3)#4
(835) mejillitriplexion = E(3E3E3,000,000+3)#4
...
(836) multillitriplexion = E(3E3E3E42+3)#4
Continuing further...
(837) micrilliquadriplexion = E3,000,003#5
(838) killilliquadriplexion = E(3E3000+3)#5
(839) megilliquadriplexion = E(3E3,000,000+3)#5
(840) kalilliquadriplexion = E(3E3E3000+3)#5
(841) mejilliquadriplexion = E(3E3E3,000,000+3)#5
(842) multilliquadriplexion = E(3E3E3E42+3)#5
...
(843) micrilliquintiplexion = E3,000,003#6
(844) killilliquintiplexion = E(3E3000+3)#6
(845) megilliquintiplexion = E(3E3,000,000+3)#6
(846) kalilliquintiplexion = E(3E3E3000+3)#6
(847) mejilliquintiplexion = E(3E3E3,000,000+3)#6
(848) multiilliquintiplexion = E(3E3E3E42+3)#6
...
(849) micrillideciplexion = E3,000,003#11
...
(850) micrillicentiplexion = E3,000,003#101
...
Now, to further enhance the numbers, I will coin the numbers.
(851) micrillimilliaplexion = E3,000,003#1001
(852) millimegaplexion = E6#1,000,001 (also milli-millia-milliplexion)
(853) micrillimegaplexion = E3,000,003#1,000,001
(854) milligigaplexion = E6#1,000,000,001
(855) milliteraplexion = E6#(10^12+1)
(856) millipetaplexion = E6#(10^15+1)
(857) milli-exaplexion = E6#(10^18+1)
(858) millizettaplexion = E6#(10^21+1)
(859) milliyottaplexion = E6#(10^24+1)
(860) millironnaplexion = E6#(10^27+1) (or (861) millixennaplexion)
(862) milliquettaplexion = E6#(10^30+1) (or (863) millixennaplexion)
(864) milli-ikaplexion = E6#(10^60+1)
(865) millitrakaplexion = E6#(10^90+1)
...
(866) millihotaplexion = E6#(10^300+1)
(867) millikalaplexion = E6#(10^3000+1)
(868) millimejiplexion = E6#(10^3,000,000+1)
(869) milligijiplexion = E6#(10^3,000,000,000+1)
(870) milli-astiplexion = E6#(10^3*10^12+1)
...
(871) millimultiplexion = E6#(10^3*10^42+1)
That finally wraps up the -illi-n-plexion parts. However, there is a section break, where the prefixes by Allstair Cockburn step in to coin some numbers.
Allstair Cockburn coined multiple prefixes, such as gar- (square), fz- (a number to the power of the number itself, a number tetrated to 2), fuga- (a number down-tetrated to itself, down-tetration is a weak tetration, which solves from left to right), megafuga- (a number tetrated to itself).
There are possible extensions to this... like trar- (cube), quadrar- (to the 4th power), taz- (a number tetrated to 3), tetraz- (a number tetrated to 4), weak-gigafuga (a number down-pentated to itself, ↓↓↓), gigafuga- (a number pentated to itself, ↑↑↑), and others.
Note: I only coined some numbers.
First of all, let's start with gar- (which is a square of a number) .
garguppy = 10^40
(872) gargogol = 10^100 (also googol***)
(873) garogol = 10^160
gargoogol = 10^200
(874) gareceton = 10^606
(875) gargoogolchime = 10^2000 (also guppytoll)
(876) gargoogoltoll = 10^20,000 (also guppygong)
gargoogolgong = 10^200,000
...
(877) gargoogolbit = 2^200
(878) gargoogolbyte = 8^200 = 2^600
(879) hexadecimal-gargoogol = 16^200 = 2^800
...
(880) hexadecimal-gargoogolgong = 16^200,000 = 2^800,000
Next up, fz-,
fzguppy = 10^20*10^20 = 10^2*10^21
(881) fzgogol = 10*(50*10^50) = 10*(5*10^51)
(882) fzogol = 10*(80*10^80) = 10*(8*10^81)
(883) fzgoogolspeck = 10*(90*10^90) = 10*(9*10^91)
fzgoogol = 10^(100*10^100) = 10^10^102
(884) fzeceton = 10^(303*10^303)
(885) fzgoogolchime = 10^(1000*10^1000) = 10^10^1003
(886) fzgoogoltoll = 10^(10,000*10^10,000) = 10^10^10,004
(887) fzgoogolgong = 10^(100,000*100^10,000) = 10^10^100,005
fzmilliplexion = 10^10^1,000,006
(888) fzbilliplexion = 10^10^1,000,000,009
(889) fztrilliplexion = 10^10^(10^12+12)
...
(890) fzguppyplex = 10^10^(10^20+20)
(891) fzgogolplex = 10^10^(10^50+50)
fzgoogolplex = 10^10^(10^100+100)
(892) fzecetonplex = 10^10^(10^303+303)
Now, it's the fuga- prefix's turn.
fugaguppy = (10^20)^(10^20)^(10^20-1) ~ 10^10^(2*10^21)
(893) fugagogol = (10^50)^(10^50)^(10^50-1) ~ 10^10^(5*10^51)
(894) fuga-ogol = (10^80)^(10^80)^(10^80-1) ~ 10^10^(8*10^81)
fugagoogol = (10^100)^(10^100)^(10^100-1) ~ 10^10^10^102
(895) fugaeceton = (10^303)^(10^303)^(10^303-1) ~ 10^10^(3.03*10^305)
...
(896) fugagoogolgong = (10^100,000)^(10^100,000)^(10^100,000-1) ~ 10^10^10^100,005
...
(897) fugaguppyplex = (10^guppy)^(10^guppy)^(10^guppy-1) ~ 10^10^10^(2*10^21)
fugagoogolplex = (10^googol)^(10^googol)^(10^googol-1) ~ 10^10^10^10^102
Now, the new prefix traz- is here. We define traz-n as: n↑↑3. Since traz- prefix just makes the number slightly larger than fuga-, we will use the same approximation as fuga-.
(898) trazpipsqueak = (10^7)^(10^7)^(10^7) ~ 10^10^(7*10^7)
(899) trazguppy = (10^20)^(10^20)^(10^20) ~ 10^10^(2*10^21)
(900) trazgogol = (10^50)^(10^50)^(10^50) ~ 10^10^(5*10^51)
(901) trazgoogol = googol^^3 ~ 10^10^10^102
(902) trazeceton = eceton^^3
(903) trazgoogolgong = googolgong^^3
(904) trazguppyplex = guppyplex^^3
(905) trazgoogolplex = googolplex^^3
Finally, we are finishing off with -logue series, which means 10 tetrated to any numbers.
monologue* = 10
dialogue = 10^10
trialogue = 10^10^10
tetralogue = 10^10^10^10
pentalogue = 10^10^10^10^10 = E1#5
hexalogue = 10^10^10^10^10^10 = E1#6
...
dekalogue = 10^^10 = E1#10
...
hectalogue** = 10^^100 = E1#100
(Hectalogue is also known as giggol by Jonathan Bowers, see BEAF numbers for more info)
...
chilialogue = 10^^1000 = E1#1000 (also (906) kilologue)
...
chilia-chilialogue or (907) hecta-myrialogue or (908) megalogue = 10^^1,000,000 = E1#1,000,000
octadalogue = E1#100,000,000 = 10^^100,000,000
(909) gigalogue = 10^^1,000,000,000 = E1#1,000,000,000
(910) teralogue = 10^^10^12 = E1#E12 (not to be confused with the earlier tetralogue)
(911) petalogue = 10^^10^15 = E1#E15 (not to be confused with the earlier pentalogue)
sedeniadalogue = 10^^10^16 = E1#E16
(912) exalogue = 10^^10^18 = E1#E18 (not to be confused with the earlier hexalogue)
(913) zettalogue = 10^^10^21 = E1#E21
(914) yottalogue = 10^^10^24 = E1#E24
(915) ronnalogue = 10^^10^27 = E1#E27
(916) quettalogue = 10^^10^30 = E1#E30
Obviously, we have reached the limit of Guppy Regiment, as the numbers are already exceed anything that covered in most of the number theory branches, even Mega is nowhere near quettalogue, or even googolmultiplex!
But, to complete the whole regiment, there are 84 numbers left, so, we will add and combine the prefix and suffix.
(917) garpipsqueak = 10^14
(918) garsqueaker = 2.5*10^21
(919) garminnow = 10^50
(920) gargoby = 10^70
(921) gargoogolspeck = 10^180
(922) gargoogolcrumb = 10^190
(923) gargoogolchunk = 10^198
(924) gargoogolbunch = 10^202
(925) gargoogolcrowd = 10^210
(926) gargoogolswarm = 10^220
Note the gar- prefix is applied later, so what happen if we apply gar- earlier, and then followed by a series of suffixes? The result: It will be a slightly smaller or larger number.
(927) gargoogol-specked = 10^190 (gargoogol / 10^10) (also (922) gargoogolcrumb)
(928) gargoogol-crumbed = 10^195 (gargoogol / 10^5)
(929) gargoogol-chunked = 10^199 (gargoogol / 10)
(930) gargoogol-bunched = 10^201
(931) gargoogol-crowded = 10^205
(932) gargoogol-swarmed = 10^210
Even though the names look similar and confusing, we added -ed on top of the existing suffix to tell us that the suffix was applied later. How about combining -plex and other prefixes?
(933) milliplexionchunk = 10^999,999
(934) milliplexionbunch = 10^1,000,001
...
(935) guppyplexispeck = 10^(10^20-10)
(936) guppyspeck-plexed = 10^10^10
Just like the previous gar- example, we added -ed at the back of the suffix to tell that the operation is applied later, and to prevent confusion between the two. Let's continue it with...
(937) guppycrumb-plexed = 10^10^15
(938) guppychunk-plexed = 10^10^19
(939) guppyplexicrumb = 10^(10^20-5)
(940) guppyplexichunk = 10^(10^20-1)
...
(941) gogolspeck-plexed = E40#2 = 10^10^40
(942) gogolchunk-plexed = E49#2 = 10^10^49
(943) gogolplexichunk = 10^(10^50-1)
...
(944) ogolchunk-plexed = E79#2 = 10^10^79
...
(945) googolspeck-plexed = E90#2 = 10^10^90
(946) googolcrumb-plexed = E95#2 = 10^10^95
(947) googolchunk-plexed = E99#2 = 10^10^99
(948) googolplexispeck = E(E100-10) = 10^(10^100-10) = googolplex ÷ 10,000,000,000 (or (949) googolplex-specked)
(950) googolplexicrumb = E(E100-5) = 10^(10^100-5) = googolplex ÷ 100,000 (or (951) googolplex-crumbed)
(952) googolplexichunk = E(E100-1) = 10^(10^100-1) = googolplex ÷ 10 (or (953) googolplex-chunked)
...
How about -bunch, -crowd, and -swarm? (Not all numbers are listed)
(954) guppyplexibunch = 10^(10^20+1)
(955) guppyplexiswarm = 10^(10^20+10)
(956) guppybunch-plexed = 10^10^21
(957) guppyswarm-plexed = 10^10^30
...
(958) gogolbunch-plexed = 10^10^51
(959) gogolswarm-plexed = 10^10^60
...
(960) googolplexibunch = 10^(10^100+1)
(961) googolplexicrowd = 10^(10^100+5)
(962) googolplexiswarm = 10^(10^100+10)
(963) googolbunch-plexed = 10^10^101
(964) googolcrowd-plexed = 10^10^105
(965) googolswarm-plexed = 10^10^110
...
There are 35 numbers left, so, how do we fill in the gap? (Enter -chime, -toll, -gong combined with other suffixes)
(966) googolchime-specked = 10^990
(967) googolchime-crumbed = 10^995
(968) googolchime-chunked = 10^999
(969) googolspeck-chimed = 10^900
(970) googolcrumb-chimed = 10^950
(971) googolchunk-chimed = 10^990
(972) googolspeck-tolled = 10^9000
(973) googolcrumb-tolled = 10^9500
(974) googolchunk-tolled = 10^9900
(975) googolspeck-gonged = 10^90,000
(976) googolcrumb-gonged = 10^95,000
(977) googolchunk-gonged = 10^99,000
...
How about, -bunch, -crowd and -swarm?
(978) googolchime-bunched = 10^1001
(979) googolchime-crowded = 10^1005
(980) googolbunch-chimed or (981) googolchime-swarmed = 10^1010
(982) googolcrowd-chimed = 10^1050
(983) googolswarm-chimed = 10^1100
(984) googolbunch-tolled = 10^10,100
(985) googolcrowd-tolled = 10^10,500
(986) googolswarm-tolled = 10^11,000
(987) googolbunch-gonged = 10^101,000
(988) googolcrowd-gonged = 10^105,000
(989) googolswarm-gonged = 10^110,000
...
To make the regiment complete with 1,000 googolisms, let's coin 11 more random googolisms. We can mix names, like:
(990) hexadecimal-ecetonswarm-gonged = 16^313,000 = 2^1,252,000
(991) fz-binary-minnowchunk = 2^(24*2^24)
(992) fzgargoogolbyte = 8^(200*8^200)
(993) ogolplexiclang = 10^10^400,000
(994) pipsqueakplex = 10^10,000,000
(995) traz-fzeceton = ((10^303)^^2)^^3 ~ E305#4
(996) googolspeck-duplexed = E90#3
(997) prawnplexigong = E65,000#2 = 10^10^65,000
(998) dekalogiaplex = 10^^11
(999) googolplexiring = E50,000#2 = 10^10^50,000 (or (1000) gogolplexigong)
(1000.1) googolplexiclang = E500,000#2 = 10^10^500,000
Finally, after 1,000 (more) numbers, the guppy regiment is completed. Let's move on to the next regiment, Grangol regiment.