Publications and arXiv postings

2024

186

David R. M. Arvidsson-Shukur, William F. Braasch Jr., Stephan De Bievre, Justin Dressel, Andrew N. Jordan, Christopher Langrenez, Matteo Lostaglio, Jeff S. Lundeen, Nicole Yunger Halpern

Properties and Applications of the Kirkwood-Dirac Distribution

arXiv:2403.18899


185

Andrew N. Jordan and Irfan A. Siddiqi

Quantum Measurement: Theory and Practice

Cambridge University Press, 2024

2023

184

Xiayu Linpeng, Nicolo Piccione, Maria Maffei, Lea Bresque, Samyak P. Prasad, Andrew N. Jordan, Alexia Auffeves, Kater W. Murch

Quantum energetics of a non-commuting measurement

arXiv:2311.13634


183

Nicolò Piccione, Maria Maffei, Xiayu Linpeng, Andrew N. Jordan, Kater W. Murch, Alexia Auffèves

Fundamental mechanisms of energy exchanges in autonomous measurements based on dispersive qubit-light interaction

arXiv:2311.11870


182

Le Hu, Andrew N. Jordan

Signs of the rates in the Lindblad master equations can always be arbitrarily determined

arXiv:2310.17881


181

Experimental realization of supergrowing fields

Sethuraj K. R., Tathagata Karmakar, S. A. Wadood, Andrew N. Jordan, A. Nick Vamivakas

arXiv:2309.00016


180

Phys. Rev. Applied 20, 064046 – Published 27 December 2023

Fundamental Limits on Subwavelength Range Resolution

Andrew N. Jordan, John C. Howell

arXiv:2308.06252


179

Phys. Rev. Lett. 131, 053803 – Published 2 August 2023  [Editor's Suggestion]

Super Interferometric Range Resolution

John C. Howell, Andrew N. Jordan, Barbara Šoda, and Achim Kempf

See Focus story: Radar Resolution Gets a Boost


178

Phys. Rev. A 108, 012220 – Published 28 July 2023

A quantum Stirling heat engine operating in finite time

Debmalya Das, George Thomas, Andrew N. Jordan

arXiv:2307.13062 [quant-ph]


177

Probabilistic Unitary Formulation of Open Quantum System Dynamics

Le Hu, Andrew N. Jordan

arXiv:2307.05776


176

Optics Express 31, 37174, (2023)

Supergrowth and sub-wavelength object imaging

Tathagata Karmakar, Abhishek Chakraborty, A. Nick Vamivakas, Andrew N. Jordan

arXiv:2307.03352


175

J. Phys. A: Math. Theor. 56 495204 (2023) 

DOI 10.1088/1751-8121/ad09ec 

Beyond Superoscillation: General Theory of Approximation with Bandlimited Functions

Tathagata Karmakar, Andrew N. Jordan

arXiv:2306.03963


174

Reservoir-free decoherence in flying qubits

Nicolò Piccione, Léa Bresque, Andrew N. Jordan, Robert S. Whitney, Alexia Auffèves

arXiv:2305.02746 


173

Describing the Wave Function Collapse Process with a State-dependent Hamiltonian

Le Hu, Andrew N. Jordan

arXiv:2301.09274

2022

172

Entropy 25, 204 (2023)

https://doi.org/10.3390/e25020204 

Measurement-based quantum thermal machines with feedback control

Bibek Bhandari, Robert Czupryniak, Paolo Andrea Erdman, Andrew N. Jordan

arXiv:2212.01502


171

Phys. Rev. Research 6, 013085 – Published 23 January 2024

Cyclic Superconducting Quantum Refrigerators Using Guided Fluxon Propagation

Tathagata Karmakar, Étienne Jussiau, Sreenath K. Manikandan, Andrew N. Jordan

arXiv:2212.00277


170

Nature Physics (2024) 

Programmable Heisenberg interactions between Floquet qubits

Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, Irfan Siddiqi

arXiv:2211.10383


169

PRX Quantum 4, 040324 – Published 9 November 2023

Time-Dependent Hamiltonian Reconstruction using Continuous Weak Measurements

Karthik Siva, Gerwin Koolstra, John Steinmetz, William P. Livingston, Debmalya Das, Larry Chen, John Mark Kreikebaum, Noah Stevenson, Christian Jünger, David I. Santiago, Irfan Siddiqi, Andrew N. Jordan

arXiv:2211.07718


168

Phys. Rev. Research 5, 033045 – Published 25 July 2023

​Quantum State Driving along Arbitrary Trajectories

Le Hu, Andrew N. Jordan 

arXiv:2211.02457


167

Phys. Rev. A 107, 023710 – Published 13 February 2023

Anomalous energy exchanges and Wigner function negativities in a single qubit gate

Maria Maffei, Cyril Elouard, Bruno O. Goes, Benjamin Huard, Andrew N. Jordan, Alexia Auffèves

arXiv:2210.05323


166

Super-phenomena in arbitrary quantum observables

Andrew N. Jordan, Yakir Aharonov, Daniele C. Struppa, Fabrizio Colombo, Irene Sabadini, Tomer Shushi, Jeff Tollaksen, John C. Howell, A. Nick Vamivakas

arXiv:2209.05650


165

Phys. Rev. Research 5, 033122 – Published 22 August 2023

Many-body quantum vacuum fluctuation engines

Étienne Jussiau, Léa Bresque, Alexia Auffèves, Kater W. Murch, Andrew N. Jordan

arXiv:2208.07225


164

On superoscillations and supershifts in several variables

Y Aharonov, F Colombo, AN Jordan, I Sabadini, T Shushi, DC Struppa, J Tollaksen 

Quantum Studies: Mathematics and Foundations 9, 417–433 (2022) 

https://doi.org/10.1007/s40509-022-00277-x 


163

Phys. Rev. A 106, 052214 – Published 23 November 2022

Post-selection and quantum energetics

Spencer Rogers, Andrew N. Jordan

arXiv:2207.14194


162

Quantum 7, 1099 (2023). 

Energy-efficient entanglement generation and readout in a spin-photon  interface

Maria Maffei, Bruno O. Goes, Stephen C. Wein, Andrew N. Jordan, Loïc  Lanco and Alexia Auffèves 

arXiv:2205.09623 


161

Phys. Rev. A 106, 042221 – Published 27 October 2022  [Editor's Suggestion]

Thermodynamics of Quantum Measurement and the Demon's Arrow of Time

Kagan Yanik, Bibek Bhandari, Sreenath K. Manikandan, Andrew N. Jordan

arXiv:2205.08031 [quant-ph]



160

PRX Quantum 3, 040308 – Published 17 October 2022  [Editor's Suggestion]

Analog Quantum Simulation of the Dynamics of Open Quantum Systems

Chang Woo Kim, John M. Nichol, Andrew N. Jordan, Ignacio Franco

arXiv:2203.12127     


159

Phys. Rev. A 106, 032424 – Published 21 September 2022

Quantum Telescopy Games

Robert Czupryniak, Eric Chitambar, John Steinmetz, Andrew N. Jordan

arXiv:2203.06252 [quant-ph] 


158

Physical Review Letters 128, 220506 (2022). 

Energetic cost of measurements using quantum, coherent, and thermal light

Xiayu Linpeng, Léa Bresque, Maria Maffei, Andrew N. Jordan, Alexia Auffèves, Kater W. Murch

arXiv:2203.01329


157

Phys. Rev. A 106, 052609 – Published 28 November 2022

Achieving Heisenberg Scaling on Measurement of A Three-Qubit System via Quantum Error Correction

Le Hu, Shengshi Pang, Andrew N. Jordan

arXiv:2203.01179

2021

156

Phys. Rev. Research 4, 033103 – Published 5 August 2022

Continuous Measurement Boosted Adiabatic Quantum Thermal Machines

Bibek Bhandari, Andrew N. Jordan

arXiv:2112.03971


155

Phys. Rev. Lett. 128, 160505 – Published 22 April 2022

Variational principle for optimal quantum controls in quantum metrology

Jing Yang, Shengshi Pang, Zekai Chen, Andrew N. Jordan, Adolfo del Campo

 arXiv:2111.04117


154


Enhanced on-chip phase measurement by inverse weak value amplification

Meiting Song, John Steinmetz, Yi Zhang, Juniyali Nauriyal, Kevin Lyons, Andrew N. Jordan & Jaime Cardenas 

Nat Commun 12, 6247 (2021)

https://doi.org/10.1038/s41467-021-26522-2 


153

Phys. Rev. Lett. 129, 110601 – Published 9 September 2022

Energetics of a Single Qubit Gate

Jeremy Stevens, Daniel Szombati, Maria Maffei, Cyril Elouard, Réouven Assouly, Nathanaël Cottet, Rémy Dassonneville, Quentin Ficheux, Stefan Zeppetzauer, Audrey Bienfait, Andrew N. Jordan, Alexia Auffèves, Benjamin Huard

arXiv:2109.09648


152

Phys. Rev. A 108, 052408 – Published 8 November 2023 [Editor's Suggestion]

Optimal photonic gates for quantum-enhanced telescopes

Robert Czupryniak, John Steinmetz, Paul G. Kwiat, Andrew N. Jordan

arXiv:2108.01170


151 

Phys. Rev. E 105, 044137 – Published 25 April 2022

Efficiently Fuelling a Quantum Engine with Incompatible Measurements

Sreenath K. Manikandan, Cyril Elouard, Kater W. Murch, Alexia Auffèves, Andrew N. Jordan

arXiv:2107.13234


150

Nat Commun 13, 2307 (2022) 

Experimental demonstration of continuous quantum error correction

William P. Livingston, Machiel S. Blok, Emmanuel Flurin, Justin Dressel, Andrew N. Jordan, Irfan Siddiqi

arXiv:2107.11398


149

Phys. Rev. B 104, 075442 – Published 23 August 2021

Minimal two-body quantum absorption refrigerator

Bibek Bhandari, Andrew N. Jordan

arXiv:2105.05835


148

Phys. Rev. A 105, 052229 – Published 31 May 2022

Continuous measurement of a qudit using dispersively coupled radiation

John Steinmetz, Debmalya Das, Irfan Siddiqi, Andrew N. Jordan

arXiv:2105.00808


147

Phys. Rev. Lett. 126, 220801 – Published 1 June 2021

Enhanced weak-value amplification via photon recycling

Courtney Krafczyk, Andrew N. Jordan, Michael E. Goggin, Paul G. Kwiat

arXiv:2104.14393


146

Phys. Rev. Research 4, 013133 – Published 18 February 2022

Super-Heisenberg scaling in Hamiltonian parameter estimation in the long-range Kitaev chain

Jing Yang, Shengshi Pang, Andrew N. Jordan

 arXiv:2104.07120


145

Opt. Express 30, 3700-3718 (2022) 

Enhanced on-chip frequency measurement using weak value amplification

John Steinmetz, Kevin Lyons, Meiting Song, Jaime Cardenas, Andrew N. Jordan

arXiv:2103.15752


144

Quantum measurement arrow of time and fluctuation relations for measuring spin of ultracold atoms

Maitreyi Jayaseelan, Sreenath K. Manikandan, Andrew N. Jordan & Nicholas P. Bigelow 

Nature Communications 12, 1847 (2021)


143

PRX Quantum 3, 010327 – Published 18 February 2022

Stochastic Path Integral Analysis of the Continuously Monitored Quantum Harmonic Oscillator

Tathagata Karmakar, Philippe Lewalle, Andrew N. Jordan

arXiv:2103.06111


142

Phys. Rev. B 104, 045414 – Published 16 July 2021

Thermal control across a chain of electronic nanocavities

Étienne Jussiau, Sreenath K. Manikandan, Bibek Bhandari, Andrew N. Jordan

arXiv:2103.05831


141

Optics Express Vol. 29, Issue 14, pp. 22034-22043 (2021) 

Superresolution of partially coherent light sources using parity sorting

S. A. Wadood, Yiyu Zhou, Jing Yang, Kevin Liang, M. A. Alonso, X.-F. Qian, T. Malhotra, S.M. Hashemi Rafsanjani, Andrew N. Jordan, Robert W. Boyd, A. N. Vamivakas

arXiv:2102.01603


140

Opt. Express 29, 11784-11792 (2021)

Confocal super-resolution microscopy based on a spatial mode sorter

Katherine Bearne, Yiyu Zhou, Boris Braverman, Jing Yang, S. A. Wadood, Andrew N. Jordan, A. N. Vamivakas, Zhimin Shi, Robert W. Boyd

arXiv:2101.03649


2020

139

Phys. Rev. B 103, 075404 – Published 2 February 2021

Stochastic Thermodynamic Cycles of a Mesoscopic Thermoelectric Engine

R David Mayrhofer, Cyril Elouard, Janine Splettstoesser, Andrew N Jordan

arXiv:2010.06853


138

Phys. Rev. B 102, 235427 – Published 21 December 2020

Autonomous quantum absorption refrigerators

Sreenath K. Manikandan, Étienne Jussiau, Andrew N. Jordan

arXiv:2010.06024


137

Quantum 5, 498 (2021)

Quantum erasing the memory of Wigner's friend

Cyril Elouard, Philippe Lewalle, Sreenath K. Manikandan, Spencer Rogers, Adam Frank, Andrew N. Jordan

arXiv:2009.09905 


136

Systems and Methods for Superconducting Quantum Refrigeration

Patent number:  US20210102838A1

Filed on October 9, 2019,

Awarded October 29, 2020


135

Phys. Rev. B 103, 085402 – Published 1 February 2021

Quantum system dynamics with a weakly nonlinear Josephson junction bath

Jing Yang, Étienne Jussiau, Cyril Elouard, Karyn Le Hur, Andrew N. Jordan

 arXiv:2008.08052 


134

Phys. Rev. D 102, 064028 – Published 10 September 2020

Black holes as Andreev reflecting mirrors

Sreenath K. Manikandan, Andrew N. Jordan

arXiv:2007.09467


133

Phys. Rev. Lett. 126, 120605 – Published 24 March 2021 (editor's suggestion)

A two-qubit engine fueled by entangling operations and local measurements

Léa Bresque, Patrice A. Camati, Spencer Rogers, Kater Murch, Andrew N. Jordan, Alexia Auffèves

arXiv:2007.03239


132

Annals of Physics, 421, 168289 (2020)

Nonequilibrium Steady State and Heat Transport in Nonlinear Open Quantum Systems: Stochastic Influence Action and Functional Perturbative Analysis

Jing Yang, Jen-Tsung Hsiang, Andrew N. Jordan, B. L. Hu 

arXiv:2006.14024


131

Phys. Rev. A 102, 062219 – Published 28 December 2020

Entanglement-Preserving Limit Cycles from Sequential Quantum Measurements and Feedback

Philippe Lewalle, Cyril Elouard, Andrew N. Jordan 

arXiv:2003.02952


130

Phys. Rev. E 102, 030102(R) – Published 18 September 2020

A quantum heat switch based on a driven qubit 

Cyril Elouard, George Thomas, Olivier Maillet, Jukka P. Pekola, Andrew N. Jordan 

arXiv:2001.10367


129

Quantum Stud.: Math. Found. 7, 341–346 (2020). 

doi:10.1007/s40509-019-00218-1 

Energy-based weak measurement

Waegell, M., Elouard, C. & Jordan, A.N. 

arXiv:1912.11937 

2019

128

High Temperature Superconductivity

Andrew Jordan

Inference, Vol. 5, No. 1 (2019) - Experiment Reviews


127

Some Like It Hot

Andrew Jordan and Sreenath Manikandan, reply by John Norton

In response to “A Hot Mess” (Vol. 4, No. 4). 

Inference, Vol. 5, No. 1 (2019) - Letter to the Editor


126

Superresolution using supergrowth and intensity contrast imaging

Andrew N. Jordan

Quantum Stud.: Math. Found. 7, 285–292 (2020)

https://doi.org/10.1007/s40509-019-00214-5 


125

Method for Scanning an Object Using a Gravimeter

Andrew N. JORDAN, John C. Howell

US Patent 20190196053A1 


124

Quantum Stud.: Math. Found. 7, 203–215 (2020) 

https://doi.org/10.1007/s40509-019-00217-2 

Quantum measurement engines and their relevance for quantum interpretations

Andrew N. Jordan, Cyril Elouard, Alexia Auffèves

arXiv:1911.06838


123

Diffusive entanglement generation by continuous homodyne monitoring of spontaneous emission

Philippe Lewalle, Cyril Elouard, Sreenath K. Manikandan, Xiao-Feng Qian, Joseph H. Eberly, Andrew N. Jordan

arXiv:1910.01204


122

Advances in Optics and Photonics Vol. 13, Issue 3, pp. 517-583 (2021)

Entanglement of a pair of quantum emitters under continuous fluorescence measurements: A tutorial

Philippe Lewalle, Cyril Elouard, Sreenath K. Manikandan, Xiao-Feng Qian, Joseph H. Eberly, Andrew N. Jordan

arXiv:1910.01206 


121

Precision frequency measurement on a chip using weak value amplification 

John Steinmetz, Kevin Lyons, Meiting Song, Jaime Cardenas, Andrew N. Jordan

SPIE Proceedings Volume 11134, Quantum Communications and Quantum Imaging XVII; 111340S (2019) 

https://doi.org/10.1117/12.2529564  


120

Nature Communications 11, 3022 (2020). 

https://doi.org/10.1038/s41467-020-16745-0 

Conditional Teleportation of Quantum-Dot Spin States

Haifeng Qiao, Yadav P. Kandel, Sreenath K. Manikandan, Andrew N. Jordan, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, John M. Nichol

arXiv:1908.08306


119

Contemporary Physics, 61:1, 26-50 (2020)

DOI: 10.1080/00107514.2020.1747201 

Measuring Fluorescence to Track a Quantum Emitter's State: A Theory Review

Philippe Lewalle, Sreenath K. Manikandan, Cyril Elouard, Andrew N. Jordan

arXiv:1908.04720


118

Quantum 4, 358 (2020)

https://doi.org/10.22331/q-2020-11-04-358

Always-On Quantum Error Tracking with Continuous Parity Measurements

Razieh Mohseninia, Jing Yang, Irfan Siddiqi, Andrew N. Jordan, Justin Dressel

arXiv:1907.08882


117

Quantum Stud.: Math. Found. 7, 145–153 (2020) 

https://doi.org/10.1007/s40509-019-00205-6 

Diffraction-Based Interaction-Free Measurements

Spencer Rogers, Yakir Aharonov, Cyril Elouard, Andrew N. Jordan 

arXiv:1907.05977


116

Foundations of Physics 50, 1294–1314 (2020)

DOI:10.1007/s10701-020-00381-1 

Spooky Work at a Distance: an Interaction-Free Quantum Measurement-Driven Engine

Cyril Elouard, Mordecai Waegell, Benjamin Huard, Andrew N. Jordan 

arXiv:1904.09289


115

Time dependent metrology: improving precision through coherent control

Andrew N. Jordan 

Proc. SPIE 10933, Advances in Photonics of Quantum Computing, Memory, and Communication XII, 1093306 (4 March 2019); 

doi: 10.1117/12.2514947 


114

Phys. Rev. B 100, 045418 – Published 24 July 2019

Thermal transistor and thermometer based on Coulomb-coupled conductors

Jing Yang, Cyril Elouard, Janine Splettstoesser, Björn Sothmann, Rafael Sánchez, Andrew N. Jordan

arXiv:1903.11167


113

Phys. Rev. Applied 11, 054034 – Published 13 May 2019

Superconducting quantum refrigerator: Breaking and rejoining Cooper pairs with magnetic field cycles

Sreenath K. Manikandan, Francesco Giazotto, Andrew N. Jordan

arXiv:1902.00063


112

Phys. Rev. Lett. 123, 117701 – Published 9 September 2019

Experimental realization of a quantum dot energy harvester

G. Jaliel, R.K. Puddy, R. Sanchez, A.N. Jordan, B. Sothmann, H. Beere, J.P. Griffiths, D.A. Ritchie, C.G. Smith

arXiv:1901.10561


2018

111

Phys. Rev. D 98, 124043 – Published 28 December 2018

Bosons falling into a black hole: A superfluid analogue

Sreenath K. Manikandan, Andrew N. Jordan 

 arXiv:1811.03209 


110

Optica 6, 534-541 (2019) 

Quantum-limited estimation of the axial separation of two incoherent point sources

Yiyu Zhou, Jing Yang, Jeremy D. Hassett, Seyed Mohammad Hashemi Rafsanjani, Mohammad Mirhosseini, A. Nick Vamivakas, Andrew N. Jordan, Zhimin Shi, Robert W. Boyd

arXiv:1810.01027


109

Quantum Stud.: Math. Found. 6, 169 (2019).  

https://doi.org/10.1007/s40509-018-0175-9 

Gravitational sensing with weak value based optical sensors

Andrew N. Jordan, Philippe Lewalle, Jeff Tollaksen, John C. Howell 

arXiv:1808.00371


108

Phys. Rev. A 99, 022117 (2019)

Fluctuation Theorems for Continuous Quantum Measurement and Absolute Irreversibility

Sreenath K. Manikandan, Cyril Elouard, Andrew N. Jordan 

arXiv:1807.05575


107  

Phys. Rev. A 100, 032104 – Published 3 September 2019

Optimal measurements for quantum multi-parameter estimation with general states 

Jing Yang, Shengshi Pang, Yiyu Zhou, Andrew N. Jordan 

arXiv:1806.07337 

 

106 

Inference: International Review of Science 4, 1 

Woit’s Way, Book review of "Quantum Theory, Groups and Representations" by Peter Woit 

Andrew Jordan 


105 

Quantum Stud.: Math. Found. 7, 23–47 (2020)

https://doi.org/10.1007/s40509-019-00198-2 

Quantum state tomography with time-continuous measurements: reconstruction with resource limitations 

Areeya Chantasri, Shengshi Pang, Teerawat Chalermpusitarak, Andrew N. Jordan 

arXiv:1805.11807 


104 

Phys. Rev. A 98, 012141 – Published 31 July 2018

Chaos in Continuously Monitored Quantum Systems: An Optimal Path Approach 

Philippe Lewalle, John Steinmetz, Andrew N. Jordan 

arXiv:1803.07615 


103  

Quantum Stud.: Math. Found. (2019) 6, 241. 

https://doi.org/10.1007/s40509-019-00182-w 

Time reversal symmetry of generalized quantum measurements with past and future boundary conditions 

Sreenath K. Manikandan, Andrew N. Jordan 

arXiv:1801.04364 

 

102  

Phys. Rev. Lett. 120, 260601 – Published 27 June 2018

Efficient Quantum Measurement Engines 

Cyril Elouard, Andrew N. Jordan 

arXiv:1801.03979 

 

101 

Abrupt transitions between Markovian and non-Markovian dynamics in open quantum systems 

Shengshi Pang, Todd A. Brun, Andrew N. Jordan 

arXiv:1712.10109 

2017 

100 

Phys. Rev. D 96, 124011 (2017) 

Andreev reflections and the quantum physics of black holes 

Sreenath K. Manikandan, Andrew N. Jordan 

arXiv:1709.06154 


99 

Inference, Vol. 3, Issue 2, Book Review 

Odd Man Out 

Andrew Jordan 

 

98 

Quantum Studies: Mathematics and Foundations (2018) 5: 579. https://doi.org/10.1007/s40509-017-0145-7 

Noise suppression in inverse weak value based phase detection 

Kevin Lyons, John C. Howell, and Andrew N. Jordan 

arXiv:1707.03122 

 

97 

Phys. Rev. A 97, 012118 (2018) 

Simultaneous continuous measurement of non-commuting observables: quantum state correlations 

Areeya Chantasri, Juan Atalaya, Shay Hacohen-Gourgy, Leigh S. Martin, Irfan Siddiqi, Andrew N. Jordan 

arXiv:1706.09670 


96 

Phys. Rev. Lett. 119, 180801 (2017) 

Achieving optimal quantum acceleration of frequency estimation using adaptive coherent control 

M. Naghiloo, A. N. Jordan, K. W. Murch 

arXiv:1706.05649 


95 

AIP Conference Proceedings 1841, 020003 (2017) 

Janus sequences of quantum measurements and the arrow of time 

Andrew N. Jordan, Areeya Chantasri, Kater Murch, Justin Dressel, and Alexander N. Korotkov 

 

94 

Science 356, 802 (2017) 

Classical-quantum sensors keep better time 

Andrew N. Jordan 

 

93 

Phys. Rev. A 96, 022311 (2017) 

Linear feedback stabilization of a dispersively monitored qubit 

Taylor Lee Patti, Areeya Chantasri, Luis Pedro García-Pintos, Andrew N. Jordan, Justin Dressel 

arXiv:1705.03878 


92 

Phys. Rev. A 96, 052128 (2017) 

Weak-value amplification and optimal parameter estimation in the presence of correlated noise 

Josiah Sinclair, Matin Hallaji, Aephraim M. Steinberg, Jeff Tollaksen, Andrew N. Jordan 

arXiv:1703.01496 


91 

Phys. Rev. A 95, 042126 (2017) 

Prediction and Characterization of Multiple Extremal Paths in Continuously Monitored Qubits 

Philippe Lewalle, Areeya Chantasri, Andrew N. Jordan 

arXiv:1612.07861 

2016 

90 

Phys. Rev. A 96, 053807 (2017) 

Quantum caustics in resonance fluorescence trajectories 

M. Naghiloo, D. Tan, P. M. Harrington, P. Lewalle A. N. Jordan, K. W. Murch 

arXiv:1612.03189 

 

89 

Phys. Rev. A 96, 020301(R) (2017) 

Quantum parameter estimation with the Landau-Zener transition 

Jing Yang, Shengshi Pang, Andrew N. Jordan 

arXiv:1612.02390 


88 

Phys. Rev. Lett. 119, 220507 (2017) 

Arrow of Time for Continuous Quantum Measurement 

Justin Dressel, Areeya Chantasri, Andrew N. Jordan, Alexander N. Korotkov 

arXiv:1610.03818 


87 

Physics 9, 104 (2016) 

Viewpoint: Mapping Out the State of a Quantum System 

Andrew N. Jordan 

 

86 

Physica E, Vol.82:1–2 (2016) 

In memoriam: Markus Büttiker (1950 - 2013) 

Carlo Beenakker, Philippe Jacquod, Andrew Jordan, Peter Samuelsson 

arXiv:1606.05667 

 

85 

Nature Communications 8, 14695 (2017) 

Quantum metrology with time-dependent Hamiltonians 

Shengshi Pang, Andrew N. Jordan 

arXiv:1606.02166 

 

84 

Phys. Rev. A 95, 012314 (2017) 

Rapid estimation of drifting parameters in continuously measured quantum systems 

Luis Cortez, Areeya Chantasri, Luis Pedro García-Pintos, Justin Dressel, Andrew N. Jordan 

arXiv:1606.01407 


83 

Phys. Rev. A 94, 012329 (2016) 

Protecting weak measurements against systematic errors 

Shengshi Pang, Jose Raul Gonzalez Alonso, Todd A. Brun, Andrew N. Jordan 

arXiv:1605.09040 


82 

Phys. Rev. A 93, 043841 (2016) 

Precision optical displacement measurements using biphotons 

Kevin Lyons, Shengshi Pang, Paul G. Kwiat, and Andrew N. Jordan 

arXiv:1604.06856 


81 

Phys. Rev. X 6, 041052 (2016) 

Quantum trajectories and their statistics for remotely entangled quantum bits 

Areeya Chantasri, Mollie E. Kimchi-Schwartz, Nicolas Roch, Irfan Siddiqi, Andrew N. Jordan 

arXiv:1603.09623 


80 

Quantum Stud.: Math. Found. (2016) 3: 237 

Anatomy of Fluorescence: Quantum trajectory statistics from continuously measuring spontaneous emission 

Andrew N. Jordan, Areeya Chantasri, Pierre Rouchon, Benjamin Huard 

arXiv:1511.06677 

2015 

79 

Quantum Stud.: Math. Found. (2016) 3: 1 

Weak values are quantum: you can bet on it 

Alessandro Romito, Andrew N. Jordan, Yakir Aharonov, Yuval Gefen 

arXiv:1508.06304 


78 

Physica E 74, 465 (2015) 

Three-terminal heat engine and refrigerator based on superlattices 

Yunjin Choi and Andrew N. Jordan 

arXiv:1508.03060 


77 

Phys. Rev. A 92, 032125 (2015) 

Stochastic path integral formalism for continuous quantum measurement 

Areeya Chantasri, Andrew N. Jordan 

arXiv:1507.07016 


76 

Physica E 75, 86 (2016) 

Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics 

Rafael Sánchez, Björn Sothmann, Andrew N. Jordan 

arXiv:1507.00162 


75 

Phys. Rev. Lett. 114, 170801 (2015) 

Power-Recycled Weak-Value-Based Metrology 

Kevin Lyons, Justin Dressel, Andrew N. Jordan, John C. Howell, and Paul G. Kwiat 

arXiv:1504.08210 


74 

Phys. Rev. B 92, 125306 (2015) 

Electrical Current from Quantum Vacuum Fluctuations in Nano-Engines  

Loïc Henriet, Andrew N. Jordan, Karyn Le Hur 

arXiv:1504.02073 


73 

New J. Phys. 17, 075006 (2015) 

Heat diode and engine based on quantum Hall edge states 

Rafael Sánchez, Björn Sothmann, Andrew N. Jordan 

arXiv:1503.02926 


72 

Quantum Stud.: Math. Found. (2015) 2: 255 

Can a Dove prism change the past of a single photon?  

Miguel A. Alonso, Andrew N. Jordan 

arXiv:1501.01287 


71 

Phys. Rev. A 92, 032127 (2015) 

Experimentally Quantifying the Advantages of Weak-Values-Based Metrology 

Gerardo I. Viza, Julián Martínez-Rincón, Gabriel B. Alves, Andrew N. Jordan, John C. Howell 

arXiv:1410.8461 

2014 

70 

Phys. Rev. Lett. 114, 146801 (2015) 

Chiral thermoelectrics with Quantum Hall Edge States 

Rafael Sánchez, Björn Sothmann, Andrew N. Jordan 

arXiv:1410.6639 


69 

Quantum Stud.: Math. Found. (2015) 2: 5 

Heisenberg scaling with weak measurement: A quantum state discrimination point of view 

Andrew N. Jordan, Jeff Tollaksen, James E. Troupe, Justin Dressel, Yakir Aharonov 

arXiv:1409.3488 


68 

CLEO: QELS_Fundamental Science 

Increasing Weak Measurement SNR with Recycling 

Courtney Byard, Trent Graham, Andrew Jordan, and Paul Kwiat  

 

67 

Coherence and Quantum Optics X, p. 261-270 

Twenty-five years of weak values: from foundational issues to precision measurment 

Jeff Tollaksen and Andrew N. Jordan 

 

66 

Nanotechnology 26 (2015) 032001. 

Thermoelectric energy harvesting with quantum dots 

Björn Sothmann, Rafael Sánchez, Andrew N. Jordan 

arXiv:1406.5329 


65 

Europhys. Lett. 107, 47003 (2014) 

Quantum Nernst engines 

Björn Sothmann, Rafael Sánchez, Andrew N. Jordan 

arXiv:1406.5023 


64 

Nature 511, 570–573 (2014) 

Mapping the optimal route between two quantum states 

S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W. Murch, I. Siddiqi 

arXiv:1403.4992 


63 

Quantum Theory: A Two-Time Success Story 2014, pp 389-395 (Springer Milan) 

Increase of Signal-to-Noise Ratio in Weak Value Measurements 

C. Byard, T. Graham, A. Danan, L. Vaidman, A. N. Jordan, P. Kwiat  

 

62 

Quantum Theory: A Two-Time Success Story 2014, pp 259-278 (Springer Milan) 

Weak Values: The Progression from Quantum Foundations to Tool 

Andrew N. Jordan, Jeff Tollaksen  

 

61 

Nature 502, 177–178 (2013) 

Watching the wavefunction collapse 

Andrew N. Jordan 

2013 

60 

New J. Phys. 15 (2013) 095021. 

Powerful energy harvester based on resonant-tunneling quantum wells  

Björn Sothmann, Rafael Sánchez, Andrew N Jordan and Markus Büttiker 

arXiv:1309.7907 


59 

Phys. Rev. X 4, 011031 

Technical advantages for weak value amplification: When less is more 

Andrew N. Jordan, Julián Martínez-Rincón, John C. Howell  

arXiv:1309.5011 


58 

Phys. Rev. A 88, 052128 (2013) 

An operational approach to indirectly measuring tunneling time 

Yunjin Choi, Andrew N. Jordan 

arXiv:1309.1710 


57 

New J. Phys. 15, 125001 (2013) 

Correlations of heat and charge currents in quantum-dot thermoelectric engines 

Rafael Sánchez, Björn Sothmann, Andrew N. Jordan, Markus Büttiker  

arXiv:1307.0598 


56 

Rev. Mod. Phys. 86, 307 (2014) 

Understanding Quantum Weak Values: Basics and Applications  

Justin Dressel, Mehul Malik, Filippo M. Miatto, Andrew N. Jordan, Robert W. Boyd 

arXiv:1305.7154 


55 

Phys. Rev. A 88, 042110 (2013) 

Action principle for continuous quantum measurement 

A. Chantasri, J. Dressel, A. N. Jordan 

arXiv:1305.5201 


54 

Phys. Rev. A 88, 023821 (2013) 

Strengthening weak value amplification with recycled photons 

Justin Dressel, Kevin Lyons, Andrew N. Jordan, Trent M. Graham, Paul G. Kwiat  

arXiv:1305.4520 


53 

Phys. Rev. A 88, 022107 (2013) 

Quantum instruments as a foundation for both states and observables 

Justin Dressel, Andrew N. Jordan 

arXiv:1305.2816 


52 

Phys. Rev. B 87, 075312 (2013) 

Powerful and efficient energy harvester with resonant-tunneling quantum dots 

Andrew N. Jordan, Björn Sothmann, Rafael Sánchez, and Markus Büttiker  

arXiv:1302.3366 


51 

Phys. Rev. Lett. 109, 230402 (2012) 

Weak values are universal in von Neumann measurements 

J. Dressel, A. N. Jordan 

arXiv:1206.4714 

2012 

50 

Phys. Rev. B 85, 205301 (2012) 

Rectification of thermal fluctuations in a chaotic cavity heat engine 

Björn Sothmann, Rafael Sánchez, Andrew N. Jordan, Markus Büttiker 

arXiv:1201.2796 


49 

Phys. Rev. A 85, 012107 (2012) 

The significance of the imaginary part of the weak value 

J. Dressel, A. N. Jordan 

arXiv:1112.3986 

2011 

48 

AIP Conf. Proc. 1408, 132 (2011) 

Contextual values as a foundation for a unique Weak Value 

J. Dressel and A. N. Jordan 

 

47 

Phys. Rev. A 85, 022123 (2012) 

Contextual Values Approach to the Generalized Measurement of Observables 

J. Dressel, A. N. Jordan 

arXiv:1110.0418 


46 

J. Phys. A: Math. Theor. 45, 015304 (2012) 

Sufficient conditions for uniqueness of the Weak Value 

J. Dressel, A. N. Jordan 

arXiv:1106.1871 


45 

Phys. Rev. B 85, 045320 (2012) 

Measuring Which-Path Information with Coupled Electronic Mach-Zehnder Interferometers 

J. Dressel, Y. Choi, A. N. Jordan 

arXiv:1105.2587 


44 

Phys. Rev. Lett. 106, 040402 (2011) 

Experimental Violation of Two-Party Leggett-Garg Inequalities with Semiweak Measurements 

J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan  

arXiv:1101.4917 


43 

J. Phys. A: Math. Theor. 44, 385003 (2011) 

Effective Thermodynamics of an Entangled Two-Level System 

Nathan S. Williams, Karyn Le Hur, Andrew N. Jordan 

arXiv:1009.4382 


42 

Phys. Rev. A 82, 063822 (2010) 

Precision frequency measurements with interferometric weak values 

David J. Starling, P. Ben Dixon, Andrew N. Jordan, John C. Howell 

arXiv:1101.1464 

2010 

41 

Phys. Rev. A 82, 011802(R) (2010) 

Continuous phase amplification with a Sagnac interferometer 

David J. Starling, P. Ben Dixon, Nathan S. Williams, Andrew N. Jordan, John C. Howell 

arXiv:0912.2357 


40 

Phys. Rev. Lett. 104, 240401 (2010) 

Contextual Values of Observables in Quantum Measurements 

J. Dressel, S. Agarwal, A. N. Jordan 

arXiv:0911.4474 


39 

Contemporary Physics, 51, 125 (2010) 

Uncollapsing the wavefunction by undoing quantum measurements 

Andrew N. Jordan, Alexander N. Korotkov 

arXiv:0906.3468 


38 

Phys. Rev. A 81, 033813 (2010) 

Interferometric weak value deflections: quantum and classical treatments 

John C. Howell, David J. Starling, P. Ben Dixon, Praveen K. Vudyasetu, and Andrew N. Jordan 

arXiv:0906.4832 


37 

Physica E, 42, 550 (2010) 

Decay of a metastable state activated by non-Gaussian noise: A critical review of the generalized Kramers problem 

Eugene V. Sukhorukov, Andrew N. Jordan 

arXiv:0807.2675 


36 

Phys. Rev. A 80, 041803 (R) (2009) 

Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values 

David J. Starling, P. Ben Dixon, Andrew N. Jordan, and John C. Howell 

arXiv:0910.2410 

2009 

35 

Phys. Rev. Lett. 102, 173601 (2009) 

Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification 

P. Ben Dixon, David J. Starling, Andrew N. Jordan, and John C. Howell 

arXiv:0906.4828 


34 

Phys. Rev. Lett. 102, 013902 (2009) 

Realization of an All-Optical Zero to Pi Cross-Phase Modulation Jump 

Ryan M. Camacho, P. Ben Dixon, Ryan T. Glasser, Andrew N. Jordan, and John C. Howell 

 

33 

Phys. Rev. A 79, 013834 (2009) 

Gravitational red-shift and deflection of slow light 

J. Dressel, S. G. Rajeev, J. C. Howell, A. N. Jordan 

arXiv:0810.4849 


32 

Phys. Rev. Lett. 102, 086806 (2009) 

Achieving the threshold regime with an over-screened Josephson junction 

Eugene V. Sukhorukov, Andrew N. Jordan 

arXiv:0808.3465 


31 

Phys. Rev. A 78, 062322 (2008) 

Entanglement genesis under continuous parity measurement 

Nathan S. Williams, Andrew N. Jordan 

arXiv:0809.3248 

2008 

30 

Phys. Rev. B 77, 075334 (2008) 

Gap theory of rectification in ballistic three-terminal conductors 

Andrew N. Jordan, Markus Buttiker 

arXiv:0710.0538 


29 

Coherence and Quantum Optics IX, edited by N. P. Bigelow et al. (Optical Soc. of America), p. 191 

Uncollapsing the wavefunction 

Andrew N. Jordan, Alexander N. Korotkov 

arXiv:0708.0365 


28 

Europhysics Letters, 82 (2008) 18003 

Energy Measurements and Preparation of Canonical Phase States of a Nano-Mechanical Resonator 

Kurt Jacobs, Andrew N. Jordan, Elinor K. Irish 

arXiv:0707.3803 


27 

Phys. Rev. Lett. 100, 026804 (2008) 

Weak values and the Leggett-Garg inequality in solid-state qubits 

Nathan S. Williams, Andrew N. Jordan 

arXiv:0707.3427 

2007 

26 

Phys. Rev. B 76, 155324 (2007) 

Weak measurement of quantum dot spin qubits 

Andrew N. Jordan, Bjoern Trauzettel, Guido Burkard 

arXiv:0706.0180 


25 

Nature Physics 3, 243 (2007) 

Conditional statistics of electron transport in interacting nanoscale conductors 

Eugene V. Sukhorukov, Andrew N. Jordan, Simon Gustavsson, Renaud Leturcq, Thomas Ihn, Klaus Ensslin 

cond-mat/0701728 


24 

Phys. Rev. Lett. 98, 136803 (2007) 

Stochastic dynamics of a Josephson junction threshold detector 

Eugene V. Sukhorukov, Andrew N. Jordan 

cond-mat/0611783 

2006

23 

Phys. Rev. A 74, 032506 (2006) 

Fluctuation statistics of mesoscopic Bose-Einstein condensate: reconciling the master equation with the partition function to revisit the Uhlenbeck-Einstein dilemma 

Andrew N. Jordan, C. H. Raymond Ooi, Anatoly A. Svidzinsky 

cond-mat/0608247 


22 

Phys. Rev. Lett. 97, 166805 (2006) 

Undoing a weak quantum measurement of a solid-state qubit 

Alexander N. Korotkov and Andrew N. Jordan 

cond-mat/0606713 


21 

Phys. Rev. B 74, 085307 (2006) 

Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis 

Andrew N. Jordan and Alexander N. Korotkov 

cond-mat/0606676 


20 

Phys. Rev. Lett. 97, 026805 (2006) 

Leggett-Garg inequality with a kicked quantum pump  

Andrew N. Jordan, Alexander N. Korotkov, and Markus Buttiker  

cond-mat/0510782 


19 

Phys. Rev. B 73, 235331 (2006) 

Parity meter for charge qubits: an efficient quantum entangler  

B. Trauzettel, A. N. Jordan, C. W. J. Beenakker, M. Buttiker 

cond-mat/0602514 


18 

Proceedings of SPIE -- 5843, p. 80, "Fluctuations and Noise", Austin, TX 

Transport Statistics in bistable systems: a stochastic path integral approach  

Andrew N. Jordan, Eugene V. Sukhorukov  

 

2005 

17 

Phys. Rev. Lett. 95, 220401 (2005) 

Continuous quantum measurement with independent detector cross-correlations  

Andrew N. Jordan, Markus Buttiker  

cond-mat/0505044 


16 

Phys. Rev. B 72, 035335 (2005) 

Telegraphing the Size of a Fluctuation  

Andrew N. Jordan, Eugene V. Sukhorukov  

cond-mat/0503751 


15 

Physica E 29, 272 (2005) 

Ground State Entanglement Energetics 

M. Buttiker, A. N. Jordan  

quant-ph/0501018 


14 

Phys. Rev. B 71, 125333 (2005) 

Quantum Nondemolition Measurement of a Kicked Qubit  

Andrew N. Jordan, Markus Buttiker 

cond-mat/0406529 

2004

13 

cond-mat/0406335 

Comment on "Current fluctuations in non-equilibrium diffusive systems: an additivity principle" 

Eugene V. Sukhorukov, Andrew N. Jordan  

cond-mat/0406335 


12 

Proceedings of "Vth Rencontres de Moriond in Mesoscopic Physics", La Thuile (France) 

Stochastic field theory for transport statistics in diffusive systems 

E. V. Sukhorukov, A. N. Jordan, and S. Pilgram  

cond-mat/0410754 


11 

Phys. Rev. Lett. 93, 260604 (2004) 

Transport Statistics of Bistable Systems  

Andrew N. Jordan, Eugene V. Sukhorukov  

cond-mat/0406261 


10 

J. Math. Phys. 45, 4386 (2004) 

Fluctuation Statistics in Networks: a Stochastic Path Integral Approach 

Andrew N. Jordan, Eugene V. Sukhorukov, Sebastian Pilgram  

cond-mat/0401650 


J. Mod. Optics 51, 2405 (2004) 

Entanglement Energetics in the Ground State  

Andrew N. Jordan, Markus Buttiker  

quant-ph/0501017 


Phys. Rev. Lett. 92, 247901 (2004) 

Entanglement Energetics at Zero Temperature  

Andrew N. Jordan, Markus Buttiker 

cond-mat/0311647 

2003

Phys. Rev. B 68, 161310(R) (2003) 

Probe-configuration dependent dephasing in a mesoscopic interferometer  

G. Seelig, S. Pilgram, A. N. Jordan, M. Buttiker  

cond-mat/0304022 


Proceedings of the 17th International Conference "Noise and Fluctuations" p. 469, Prague  

Charge counting statistics of chaotic cavities in the hot electron regime, 

S. Pilgram, A.N. Jordan, E.V. Sukhorukov, and M. Büttiker 

 

Proceedings of the 17th International Conference "Noise and Fluctuations", p. 45, Prague 

Stochastic path integral formulation of full counting statistics, 

E.V. Sukhorukov, S. Pilgram, A.N. Jordan, and M. Büttiker 

 

Phys. Rev. Lett. 90, 206801 (2003) 

Stochastic Path Integral Formulation of Full Counting Statistics  

S. Pilgram, A. N. Jordan, E. V. Sukhorukov, M. Buttiker  

cond-mat/0212446 

2002

PhD Thesis, UC Santa Barbara (2002) 

Topics in quantum chaos 

Andrew N. Jordan 

 2001

quant-ph/0112139 

Sub-Planck Structure, Decoherence, and Many-Body Environments  

Andrew Jordan, Mark Srednicki 

quant-ph/0112139 


nlin.CD/0108024 

The Approach to Ergodicity in the Quantum Baker's Map  

Andrew Jordan, Mark Srednicki  

nlin.CD/0108024 

Citation figures of merit can be found on my Google Scholar account, or my Research ID account.  You may also check out my Research Gate profile.