Models Provided
In Paper
For these methods, the authors provided their equations or cut-points directly in the paper, which we have reproduced here with brief instructions. These approaches can be implemented in any software (e.g., Excel, R, Python).
Aittasalo, 2015- cut-points for mean amplitude deviation in adolescents wearing Hookie or ActiGraph monitors at the hip
Bammann, 2021- cut-points for Euclidean norm minus one for monitors worn at each hip, wrist, and ankle in older adults
Bianchim, 2022- cut-points for Euclidean norm minus one and mean amplitude deviation for monitors worn at the right hip and each wrist in children and adolescents with and without cystic fibrosis
Brage, 2003- branched and not branched models to predict energy expenditure from hip-worn CSA accelerometer counts/min and/or heart rate in adult males
Brandes, 2012- activity-specific linear regression equations for predicting energy expenditure during walking, cycling, and stair walking in children and adults using acceleration measured by a Dynaport on the lower back
Brønd, 2019- six sets of cut-points for non-proprietary counts from children wearing an ActiGraph on the right hip
Choi, 2010- five prediction models for energy expenditure in adolescents using ActiGraph counts from the hip, wrist, or ankle
Chuang, 2013- single regression, activity-specific regression, and a mono-exponential equation to predict energy expenditure in adults wearing accelerometers on the wrist and ankle
Crotti, 2020- cut-points for Euclidean norm minus one from ActiGraph worn on right hip and each wrist in children
Crouter, 2006- a 2-regression model for hip-worn ActiGraph counts in adults
Crouter, 2007- a 2-regression model for hip-worn Actical counts in adults
Crouter, 2010- an updated 2-regression model for hip-worn ActiGraph counts in adults
Crouter, 2011- an updated 2-regression model for hip-worn Actical counts in adults
Crouter, 2012- a 2-regression model for hip-worn ActiGraph counts in children
Crouter, 2018- a 2-regression model for ankle-worn ActiGraph counts in children
Curone, 2010- cut-points for signal magnitude area using ADXL330 on upper part of trunk
Dibben, 2020- cut-points for two acceleration-based metrics (sum of vector magnitudes and mean amplitude deviation) for GENEActiv monitors worn at the hip and each wrist in patients with heart failure
Dillon, 2016- cut-points for signal vector magnitude from GENEActiv worn on each wrist in adults
Diniz-Sousa, 2020- regression equations and cut-points for Euclidean norm minus one, mean amplitude deviation, and vector magnitude of ActiGraph counts from ActiGraphs worn on the lower back or hip in adults with class 2 or 3 obesity
Duclos, 2015- equation to predict total energy expenditure from smartphone accelerometers in adults
Ellingson, 2017- modification of the Hildebrand et al. (2014) model to predict energy expenditure in adults using Euclidean norm minus one from an ActiGraph worn on the right wrist
Esliger, 2011- cut-points for signal magnitude vector from GENEA worn on right hip and each wrist in adults
Fraysse, 2021- cut-points for signal vector magnitude from GENEActiv worn on each wrist in older adults
Heil, 2006- single and 2-regression models for predicting activity energy expenditure in children and adults wearing an Actical accelerometer on the right hip or non-dominant ankle or wrist
Hibbing, 2018 (2)- fifteen 2-regression models to predict energy expenditure in adults for an ActiGraph worn at the hip, each wrist and ankle using Euclidean norm minus one, gyroscope vector magnitude, and direction changes
Hikihara, 2014- a 2-regression model to predict energy expenditure in children wearing a waist-worn Omron accelerometer
Hiremath, 2012- a general equation and a set of four activity-specific regression equations for predicting energy expenditure of manual wheelchair users using a Sensewear armband
Horner, 2012- models for predicting total energy expenditure and physical activity energy expenditure for males and females during free-living using a 3dnx on the lower back
Jang, 2006- combination of 7 accelerometers (15 total axes) is used to predict energy expenditure in adults using a simple calculation converting acceleration into velocity and work
Jimmy, 2013- overall linear regression model, and a cubic 2-regression model and linear 2-regression model with separate equations for locomotor and play activities to predict energy expenditure in children wearing an ActiGraph on the hip
Johansson, 2006- branched equation model to predict energy expenditure from heart rate and counts in adults wearing a ActiGraph on the lower back
Kim, 2008- three linear regression models to predict energy expenditure in adults using waist, ankle, and wrist accelerometers
Kiuchi, 2014- twelve total models (three feature sets at four wear locations including both wrists and upper arms) were developed for predicting energy expenditure using acceleration and gyroscopic angular velocity in manual wheelchair users
Mehta, 2013- cut-points for activity intensity from raw acceleration
Migueles, 2021- cut-points for activity intensity using Euclidean norm minus measured at the hip or either wrist in older adults
Nguyen, 2013- data from three monitors - a Lifecorder accelerometer at the waist, Step Watch 3 at the ankle, and a GPS unit - are combined to predict energy expenditure in adults
Nolan, 2014- acceleration measured by an iPod touch worn on the lower back is used to determine speed and grade of walking or running which are used to calculate energy expenditure based on pre-existing equations in adults
O'Brien, 2021- logarithmic equation to predict METs from thigh-worn activPAL data in adults
Ohkawara, 2011- magnitude of filtered acceleration and the ratio of unfiltered to filtered acceleration is used to determine activity type (sedentary, household, or locomotive), then activity-specific equations are used to predict energy expenditure in adults wearing a waist-worn Omron accelerometer
Phillips, 2013- cut-points for signal magnitude vector from GENEA worn on right hip and each wrist in children
Roscoe, 2017- cut-points for signal magnitude vector from GENEActiv worn on non-dominant wrist in preschool-aged children
Sanders, 2019- cut-points for Euclidean norm minus one from ActiGraph worn on right hip and GENEActiv worn on non-dominant wrist in older adults
Schaefer, 2014- cut-points for signal magnitude vector divided by sampling frequency from GENEActiv worn on non-dominant wrist in children
Staudenmayer, 2015- linear regression and decision tree to predict energy expenditure or activity intensity, respectively, from dominant wrist-worn ActiGraphs in adults
Tanaka, 2019- the ratio of unfiltered to filtered acceleration is used to determine non-locomotive vs. locomotive activities, then activity-specific equations are used to predict energy expenditure in young children wearing a waist-worn Omron accelerometer
Tanaka, 2007- linear and non-linear equations were developed to predict energy expenditure in young children wearing an ActivTracer on the left hip
Trost, 2016- two decision tree models for classifying activity intensity from ActiGraph counts in children with cerebral palsy wearing an ActiGraph at the hip
Vaha-Ypya, 2015- equations to predict energy expenditure and activity intensity cut-points for mean amplitude deviation were determined from adults wearing a hip-worn Hookie monitor
Vaha-Ypya, 2015 (2)- cut-points for mean amplitude deviation (MAD) that can be used for any accelerometer brand were determined from adults wearing three monitors at the hip
van Hees, 2011- prediction equations for energy expenditure for pregnant women and non-pregnant women wearing a GENEA on the wrist or non-dominant hip
van Hees, 2013- prediction equations for energy expenditure of women wearing a wrist-worn GENEA
Wang, 2022- linear regression and cut-points for accelerometer activity index from a hip-worn ActiGraph monitor in older women
Weippert, 2013- four models to predict energy expenditure in adults wearing a chest-worn accelerometer
Yamazaki, 2009- model to predict energy expenditure during walking in adults wearing a waist-worn accelerometer
Zakeri, 2010- a multivariate adaptive regression splines (MARS) model to predict 24-hour total energy expenditure overall and awake, sleep, and activity energy expenditure separately in children and adolescents wearing an Actiheart
Zakeri, 2012- Cross-sectional time series and multivariate adaptive regression splines for ActiHeart, ActiGraph, or ActiGraph plus heart rate inputs, resulting in six total models for predicting total energy expenditure in preschool-aged children