Adelberger, E.G., et al. (2003) Tests of the Gravitational Inverse-Square Law. Annu. Rev. Nucl. Part. Sci, 53, 77.
Adler, R. Bazin, M. Schiffer, M. (1965) Introduction to General Relativity. McGraw Hill Inc. NY.
Arp, H. (2003) Catalogue of Discordant Redshift Associations. Aperion NJ USA ISBN 0-9683689-9-9
Bassett, B.A. , Hlozek, R (2009) Baryon Acoustic Oscillations arXiv:0910.5224v1 . [astro-ph.CO]
Bennett, C., et al. (2012) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, 20. http://dx.doi.org/10.1088/0067-0049/208/2/20
Bergshoeff, E. et al. (2009) Massive Gravity in Three Dimensions. Phys. Rev. Lett. 102: 201301
Blakeslee, J., Lucey, J., Barris, B., Hudson, M. and Tonry, J. (2001) A synthesis of data from fundamental plane and surface brightness fluctuation surveys. Monthly Notices of the Royal Astronomical Society, 327, 1004-1020. http://dx.doi.org/10.1046/j.1365-8711.2001.04800.x
Bonamente, M., et al. (2006) Determination Of The Cosmic Distance Scale From Sunyaev-Zel'dovich Effect And Chandra X-Ray Measurements Of High-Redshift Galaxy Clusters. The Astrophysical Journal, 647, 25-54. http://dx.doi.org/10.1086/505291
Bondi, H. (1951) Cosmology. Cambridge Univ. Press, London.
Browne, P. F. (1962) The case for an exponential Redshift Law. Nature, 193, 1019-1021. http://dx.doi.org/10.1038/1931019a0
Bueno-Sanchez, J. et al Parametrization for the Scale Dependent Growth in Modified Gravity. arXiv:1004.4905 [astro-ph.co] (2010)
Choloniewski, J. (1995) New test for the Hubble law. arXiv:astro-ph/9504035
Chugreev, Yu. V. (2017) Cosmological constraints on the graviton mass in RTG. Physics of Particles and Nuclei Letters 14: 539–549.
Debono, I , Smoot, G.F. (2016) General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2 (4), 23; doi:10.3390/universe2040023
de Jaege, T. et al. (2020) A measurement of the Hubble constant from Type II supernovae. MNRAS, 496 (3)
Einstein, A. (1916)Ann. Phys. 49, 769.
Einstein, A. “Autobiographical Notes” In “Albert Einstein: Philosopher-Scientist”, Paul Schilpp Ed., Illinois USA 1970 pp 17
Einasto, M. et al. (2011) The SLOAN great wall. morphology and galaxy content arXiv:1105.1632 [astro-ph.CO]
Eisenstein, A (1997) Analytic Expression for the Growth Function in a Flat Universe with a Cosmological Constant. arXiv:9309054v2 [astro-ph.co]
Evans, R.F & Dunning-Davies . J. (2004) The Gravitational Red-Shif . arXiv:0403082v1 [astro-ph.co]
Event Horizon Telescope Collaboration . (2019) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJ. L.875 (1):1-17
Falcón, N; Genova-Santos, R. (2008) Cúmulos de Galaxia y la Constante de Hubble. From Exp. Faculty of Sc. (Ciencia) 16 (3): 323-327. http://produccioncientificaluz.org/index.php/ciencia/article/view/9868
Falcón, N. (2011) MoND with Einstein's Cosmological Term as alternative to Dark Matter. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias), 40, 11-12.
Falcon, N. (2012) Mecánica Clásica: Física Teórica en formalismos de Lagrange, Hamilton y Hamilton-Jacobi. Pub. Universidad de Carabobo ISBN 978-980-233-546-6
Falcón, N. (2013) Modification of the Newtonian Dynamics in ΛFRW-Cosmology an Alternative Approach to Dark Matter and Dark Energy. Journal of Modern Physics, 319, 10-18. http://dx.doi.org/10.4236/jmp.2013.48A003
Falcon, N. and Aguirre, A. (2014) Theoretical Deduction of the Hubble Law Beginning with a MoND Theory in Context of the ΛFRW-Cosmology. International Journal of Astronomy and Astrophysics, 4, 551-559. doi: 10.4236/ijaa.2014.44051.
Falcon, N (2021) A large-scale heuristic modification of Newtonian gravity as an alternative approach to dark energy and dark matter. J Astrophys Astron 42, 102. https://doi.org/10.1007/s12036-021-09752-0
Falcon, N (2023) “Modified Gravitation and Mach's Principle: An Alternative to the Dark Matter and Dark Energy Cosmological Paradigm” Open Journal of Astronomy 2023, 1 (1): 000103. https://doi.org/10.23880/oaja-16000103
Falcon, N et al (2024) Constraining the Milky Way Dynamic Mass and Newtonian Gravity through the Proper Motion of Messier’s Globular Clusters. Open Journal of Astronomy 2023, 2 (1): 000109. DOI: 10.23880/oaja-16000109.
Freedman, W. L.(2020) The Hubble constant and the expansion age of the Universe. Phy. Rep. 333-334,13. https://doi.org/10.1016/S0370-1573(00)00013-2
Freedman, W. et al. (2001). Final Results From The Hubble Space Telescope Key Project To Measure The Hubble Constant. The Astrophysical Journal, 553, 47-72. http://dx.doi.org/10.1086/320638
Freedman, W. and Madore, B. (2010) The Hubble Constant. Annual Review of Astronomy and Astrophysics, 48, 673-710. http://dx.doi.org/10.1146/annurev-astro-082708-101829
Freedman, W. and Turner M. (2003) Colloquium: Measuring and understanding the universe. Review of Modern Physics, 75, 1433-1447. http://dx.doi.org/10.1103/RevModPhys.75.1433
Freese, K. (2000) Death of baryonic dark matter, Physics Reports 333–334: 183-201,
https://doi.org/10.1016/S0370-1573(00)00022-3.Phy
Gazeau J.-P., Novello. M. (2011) The nature of Λ and the mass of the graviton: a critical view. IJMP 26, 3697-3720.
Genova-Santos, R.T. (2020) The establishment of the Standard Cosmological Model through observations. arXiv:2001.08297v3 [astro-ph.CO]
Goldman, I. (1987) The nature of the companion of SN. A&A 170, 1, L1-L3.
Gonzalo, J. A. (1995) Del Sistema Solar a los Confines del Universo Observable, in Cosmología Astrofísica, Gonzalo, J.A., Sanchez-Gomez, J.L., Alario, M.A. Eds. Alianza. Madrid.
Gundlach, J. H. (2005) Laboratory tests of gravity. New Journal of Physics, 7, 205.
http://dx.doi.org/10.1088/1367-2630/7/1/205
Guzzo, L. (2002) “Clustering in the universe: from highly nonlinear structure to homogeneity” in Modern Cosmology, Bonometto, S. Gorini, V and Moschella, U. Ed. Ins. Physics Pub. Bristol.
Jeans, J. (1928)Astronomy and Cosmology. Cambridge University Press. Cambridge.
Jones C., Forman, W.(1984) The structure of clusters of galaxies observed with Einstein. ApJ 276,38, 20 https://ui.adsabs.harvard.edu/link_gateway/1984ApJ...276...38J/doi:10.1086/161591
Harris, W.E. (1996 ) Catalog of parameters for Milky Way globular clusters: the Database. AJ, 112: 1487 (2010 Edition)
Hinshaw, G.,. et al (2009) five-year wilkinson microwave anisotropy probe* observations: data processing, sky maps, and basic results Ap.J. SS, 180, 225 https://iopscience.iop.org/volume/0067-0049/180
Hubble, E. (1929) A Relation Between Distance And Radial Velocity Among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173. http://dx.doi.org/10.1073/pnas.15.3.168
Huterer, D. , Shafer, D.L. (2018) Dark energy two decades after: Observables, probes, consistency tests . Rep. Prog. Phys. 81: 016901 arXiv:1709.01091v2 [astro-ph.CO]
Kilic, M et al (2017) The Ages of the Thin Disk, Thick Disk, and the Halo from Nearby White Dwarfs. ApJ 837 (2)
Kovács, A. et al. (2016) Imprint of DES super-structures on the Cosmic Microwave Background . arXiv:1610.00637 [astro-ph.CO]
Komatsu, E. et al (2010) Seven-Year Wilkinson Microwave Anisotropy Probe Observations: Cosm ological Interpretation. arXiv:1001.4538. [astro-ph.co]
Krauss LM, Chaboyer B. .(2003 ) Age estimates of globular clusters in the Milky Way: constraints on cosmology. ScienceJan 3;299(5603):65-9. doi: 10.1126/science.1075631. PMID: 12511641.
Laves, K. (1898) On Some Modern Attempts to Replace Newton's Law of Attraction by Other Laws. Popular Astronomy 5, 513-18
Lemaître, G. (1927) A Homogeneous Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-galactic Nebulae. Annales de la Société Scientifique de Bruxelles, 47, 49-59.
LIGO Scientific Collaboration and Virgo Collaboration. (2017) GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters. 118 (22): 221101.
Liu, Jian-Miin (2005) Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy. arXiv:physics/0507018 [physics.gen-ph].
Mach, E. (1893) The Science of Mechanics. Cambridge Univ. Press.
Milgrom, M. (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ. 270, 365–370. http://dx.doi.org/10.1086/161131
Milgrom, M. (1983b) A modification of the newtonian dynamics: Implications for galaxies. ApJ. 270, 371–389.
Milgrom, M (2001) MOND--a pedagogical review https://arxiv.org/abs/astro-ph/0112069
Overduin, J ; Wesson, P.S. (2008) The light/Dark Universe. World Sc. Pub. Denvers
Pascual-Sánchez, J.-F. (2000) A generalized linear Hubble law for an inhomogeneous barotropic Universe. arXiv:gr-qc/0010076
Peacock, J. (1999) Cosmological Physics. Cambridge University Press, Cambridge
Peebles. P.J.E. (1993) Principles of Physical Cosmology. Princenton Univ. Press.
Peebles, P.J.E, Rastra, B. (2003) The cosmological constant and dark energy. RvMP 75, 559
Peebles, P. J. E. (2020) The Large-Scale Structure of the Universe. Princenton press: N.J. USA
Perlmutter, S et al (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. ApJ 517, 565
Planck Collaboration Planck early results. VIII. (2011) The all-sky early Sunyaev-Zeldovich cluster simple. A&A 536, A8
Planck Collaboration. Planck (2015) Results. XIII. (2016).Cosmological Parameters. A&A 594: A13
Planck Collaboration (2016) Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect. A & A 594, A22
Planck Collaboration. (2019) Planck 2018 results. VI. Cosmological parameters arXiv:1807.06209 astro-ph.CO.
Perez, L.; Falcon, N. et al. (2015) Masa y longitud de jeans a través de una Dinámica Newtoniana modificada con Campo de Yukawa Inverso. Acta Científica Venezolana, 66(4): 248–254 https://www.researchgate.net/profile/Nelson_Falcon/publication/284027488_JEANS_MASS_AND_LENGTH_THROUGH_A_MODIFIED_NEWTONIAN_DYNAMICS_WITH_INVERSE_YUKAWA_FIELD/links/564b0f4a08ae44e7a28f0922/JEANS-MASS-AND-LENGTH-THROUGH-A-MODIFIED-NEWTONIAN-DYNAMICS-WITH-INVERSE-YUKAWA-FIELD.pdf
Perlmutter, S., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586. http://dx.doi.org/10.1086/307221
Riess, A. G. et al (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 116, 1009-1038. http://dx.doi.org/10.1086/300499
Riess, A. G. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. ApJ 876 (1) , https://doi.org/10.3847/1538-4357/ab1422
Ross, M. (1007) Introduction to Cosmology, J. Wiley & Sons Ltd. 2da. Ed. London .
Sabulsky, D. O et al. (2019) Experiment to Detect Dark Energy Forces Using Atom Interferometry . Physical Review Letters. 123 (6): 061102.
Sandage, A. (1958) Currents Problems in the Extragalactic Distance Scale. The Astrophysical Journal, 127, 513-526. http://dx.doi.org/10.1086/146483
Sanejouand, Y.-H. (2014) A simple Hubble-like law in lieu of dark energy. arXiv:1401.2919 [astro-ph.CO].
Scarpa, R. (2006) Modified Newtonian Dynamics, an Introductory Review. arXiv: 0601478 [astro-ph.co]
Seeliger, H. (1895) Ueber das Newton'sche Gravitationsgesetz Astronomische Nachrichten 137 (9): 129-136 https://doi.org/10.1002/asna.18951370902
Segal, I. E., Nicoll, J. F., Wu, P. and Zhou, Z. (1993) Statistically Efficient Testing of the Hubble and Lundmark Laws on IRAS Galaxy Samples. The Astrophysical Journal, 411, 465-484. http://dx.doi.org/10.1086/172849
Shirmin, G.I. (2016) Clusters of galaxies and a Zwicky’s paradox. Astronomical and Astrophysical Transactions (AApT r) 29(3): 313–318
Silverman, M.P. (1987) Satellite test of intermediate-range deviation from Newton's law of gravity GRG 19, 5, 511-514. https://doi.org/10.1007/BF00760655
Strauss, M. and Koranyi, D. (1993) Tests of the Hubble Law from the Luminosity Function of IRAS Galaxies. arXiv:astro-ph/9308028
Sorrell, W. H. (2009). Misconceptions about the Hubble recession law. Astrophysics and Space Science, 323, 205-211. http://dx.doi.org/10.1007/s10509-009-0057-z
Tremblay, P.E., et al (2014) White Dwarf Cosmochronology in the Solar Neighborhood . arXiv:1406.5173 [astro-ph.co]
Trippe, S. (2014) The Missing Mass Problem in Astronomy and the Need for a Modified Law of Gravity arXiv:1401.5904 [astro-ph.CO]
Turyshev, S. G. and Toth, V. T. (2010) The Pioneer Anomaly. Living Reviews in Relativity, 13, 4.
http://dx.doi.org/10.12942/lrr-2010-4
Wang, S.; Li, X..D; Li, M. (2010) Revisit of Cosmic Age problem arXiv:1005.4345
Weimberg, S (1972) Gravitation and Cosmology. John Wiley and Sons Ed.. NY.
Wondrak, M.F. (2017) The Cosmological Constant and its Problems: A Review of Gravitational Aethe. arxiv 1705.06294v1[astro-ph.co]
Zwicky, F. (1933) Die Rotverschieb ung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110