Machine Learning
Above: A quick explanation of machine learning
What is it?
Machine learning is the automated process and use of a system that creates a feedback response between the artificial intelligence technology or software, and the intended target computer system that provides the A.I. with data that triggers a different response, simulating what our human brains describe as “learning” in a computer environment (Griffey, 2019). The A.I. is not sentient, and is not making decisions on its own accord, but is following a set of commands, which are written in coded language by the computer scientist at the time of the program’s creation.
Artificially intelligent programs that use machine learning can help librarians accomplish tasks such as creating abstracts for research papers automatically, creating appropriate metadata tags for published resources, creating a more efficient work environment, among many other applications that will continue to move libraries into the future (Smith, 2018).
How can machine learning be used in libraries?
References
Anderson, B. G. (2021). On constructing a scientific archives network: Exploring computational approaches to the cybernetics thought collective. Archivaria, 91(91), 104-147. doi:10.7202/1078467ar
Arnold, T., & Tilton, L. (2020). Distant viewing toolkit: A python package for the analysis of visual culture. Journal of Open Source Software, 5(45), 1800. doi:10.21105/joss.01800
Blanke, T., Bryant, M., & Hedges, M. (2012). Open-source optical character recognition for historical research. Journal of Documentation, 68(5), 659-683. doi:10.1108/00220411211256021
Candela, G., & Carrasco, R. C. (2022). Discovering emerging topics in textual corpora of galleries, libraries, archives, and museums institutions. Journal of the American Society for Information Science and Technology, 73(6), 820-833. doi:10.1002/asi.24583
Chen, H., Smith, T. R., Larsgaard, M. L., Hill, L. L., & Ramsey, M. (1997). A geographic knowledge representation system for multimedia geospatial retrieval and analysis. International Journal on Digital Libraries, 1(2), 132-152. doi:10.1007/s007990050010
Coll Ardanuy, M., Nanni, F., Beelen, K., Hosseini, K., Ahnert, R., Lawrence, J., McDonough, K., et al. Living Machines: A study of
atypical animacy. Proceedings of the 28th International Conference on Computational Linguistics https://doi.org/10.17863/CAM.63006
Cordell, R. (2020, July 14). Machine Learning + Libraries A Report on the State of the Field. LC Labs, Library of Congress.
Cordell, R., & Mullen, A. (2017). “Fugitive verses”: The circulation of poems in nineteenth-century american newspapers. American Periodicals, 27(1), 29-52.
Enis, M. (2022). News+: Library of congress trains machine learning with crowdsourcing: LC labs reports on humans-in-the-loop initiative. Library Journal, 147(2), 8.
Gallagher, L. (2019, September 5). Finding Image Pathways [web log]. Retrieved from https://stacks.wellcomecollection.org/finding-image-pathways-12d31ae347f9.
Griffey, J. (2019). Chapter 1. Introduction. Library Technology Reports, 55(1), 5–. https://uosc.primo.exlibrisgroup.com/permalink/01USC_INST/273cgt/cdi_proquest_journals_2161880237
Hagendorff. (2020). Forbidden knowledge in machine learning reflections on the limits of research and publication. AI & Society, 36(3), 767–781. https://doi.org/10.1007/s00146-020-01045-4
Hannah Alpert-Abrams. (2016). Machine reading the primeros libros. Digital Humanities Quarterly, 10(4)
Hosack, B. J. (2020). You look like a thing and i love you: How artificial intelligence works and why it's making the world a weirder place: By janelle shane, new york, voracious/little, brown and company, 2019, 272 pp., $28.00 (paperback), ISBN 9780316525244; $14.99 (eText book) Routledge. doi:10.1080/15228053.2020.1815446
IBM will no longer offer, develop, or research facial recognition technology. (2020). ICT Monitor Worldwide.
Jo, E., & Gebru, T. (2020). Lessons from archives: Strategies for collecting sociocultural data in machine learning. Paper presented at the 306-316. doi:10.1145/3351095.3372829
Kim, B. (2021). Machine learning for libraries and archives. Online Searcher; Online Searcher, 45(1), 39-41.
Kulp, P. (2020). AI's quest for a seat at the table: Machine learning isn’t quite ready to take on a campaign singlehandedly, but could assist creatives. Adweek (2003), 61(2), 9.
Lee, M. S. (2014). Falsifiability, confirmation bias, and textual promiscuity. J19, 2(1), 162-171. doi:10.1353/jnc.2014.0014
Litsey, & Mauldin, W. (2018). Knowing What the Patron Wants: Using Predictive Analytics to Transform Library Decision Making. The Journal of Academic Librarianship, 44(1), 140–144. https://doi.org/10.1016/j.acalib.2017.09.004
Malevé. (2020). On the data set’s ruins. AI & Society, 36(4), 1117–1131. https://doi.org/10.1007/s00146-020-01093-w
Massot, M., Sforzini, A., & Ventresque, V. (2019). Transcribing foucault’s handwriting with transkribus. Journal of Data Mining and Digital Humanities, Atelier Digit_Hum doi:10.46298/jdmdh.5043
Miller, M. T., Romanov, M. G., & Savant, S. B. (2018). Digitizing the textual heritage of the premodern islamicate world: Principles and plans. International Journal of Middle East Studies; Int.J.Middle East Stud, 50(1), 103-109. doi:10.1017/S0020743817000964
Milligan, I. (2013). Illusionary order: Online databases, optical character recognition, and canadian history, 1997–2010. The Canadian Historical Review, 94(4), 540-569. doi:10.3138/chr.694
Muehlberger, G., Seaward, L., Terras, M., Ares Oliveira, S., Bosch, V., Bryan, M., . . . Zagoris, K. (2019). Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. Journal of Documentation, 75(5), 954-976. doi:10.1108/JD-07-2018-0114
Mühling, Meister, M., Korfhage, N., Wehling, J., Hörth, A., Ewerth, R., & Freisleben, B. (2018). Content-based video retrieval in historical collections of the German Broadcasting Archive. International Journal on Digital Libraries, 20(2), 167–183. https://doi.org/10.1007/s00799-018-0236-z
Oberbichler, S., Boroş, E., Doucet, A., Marjanen, J., Pfanzelter, E., Rautiainen, J., . . . Tolonen, M. (2022). Integrated interdisciplinary workflows for research on historical newspapers: Perspectives from humanities scholars, computer scientists, and librarians. Journal of the American Society for Information Science and Technology, 73(2), 225-239. doi:10.1002/asi.24565
Sezen, D. (2020). Without a blink: Machine ways of seeing in contemporary visual culture. Interactions (Bristol, England), 11(1), 103-107. doi:10.1386/iscc_00010_7
Shoemaker, T. (2019). Error aligned. Textual Cultures : Text, Contexts, Interpretation, 12(1), 155-182. doi:10.14434/textual.v12i1.27153
Smith, Cordell, R., & Dillon, E. M. (2013). Infectious texts: Modeling text reuse in nineteenth-century newspapers. 2013 IEEE International Conference on Big Data, 86–94. https://doi.org/10.1109/BigData.2013.6691675
Smith, D. A., Cordell, R., & Dillon, E. M. (2013). Infectious texts: Modeling text reuse in nineteenth-century newspapers. Paper presented at the 86-94. doi:10.1109/BigData.2013.6691675
Smith, D. A., Cordell, R., & Mullen, A. (2015). Computational methods for uncovering reprinted texts in antebellum newspapers. American Literary History, 27(3), E1-E15. doi:10.1093/alh/ajv029
Smith, F.A. (2018). artificial intelligence and malicious steganography. Computers in Libraries, 38(5), 24–26. https://uosc.primo.exlibrisgroup.com/permalink/01USC_INST/273cgt/cdi_proquest_reports_2442627902
Stover, C. (2021). Dig that lick (DTL): Analyzing large-scale data for melodic patterns in jazz performances. Journal of the American Musicological Society, 74(1), 195-214. doi:10.1525/jams.2021.74.1.195
Tilton, L. (2018). American studies + computational humanities. American Quarterly, 70(3), 633-639. doi:10.1353/aq.2018.0046
Tilton, L., Alexander, E., Malcynsky, L., & Zhou, H. (2020). The role of metadata in american studies. Polish Journal for American Studies : Yearbook of the Polish Association for American Studies, 14, 149-272.
The Toronto Declaration: Protecting the Rights to Equality and Non-discrimination in Machine Learning Systems. (2018). In Policy File. Amnesty International.
Yang, T., Hsieh, Y., Liu, S., Chang, Y., & Hsu, W. (2021). A flexible template generation and matching method with applications for publication reference metadata extraction. Journal of the American Society for Information Science and Technology, 72(1), 32-45. doi:10.1002/asi.24391
Yelton, A. (2019). Chapter 2. HAMLET: Neural-Net-Powered Prototypes for Library Discovery. Library Technology Reports, 55(1), 10–. https://uosc.primo.exlibrisgroup.com/permalink/01USC_INST/273cgt/cdi_proquest_journals_2161879773