References

Bourbonniere, R. A. (2009). Review of water chemistry research in natural and disturbed peatlands. Canadian water resources journal, 34(4), 393-414.

Canadian Council of Ministers of the Environment (CCME). 2012. Canadian water quality guidelines for the protection of aquatic life: Nitrate. In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, Winnipeg.

Carlyle, G. C., & Hill, A. R. (2001). Groundwater phosphate dynamics in a river riparian zone: Effects of hydrologic flowpaths, lithology and redox chemistry. Journal of Hydrology, 247(3–4), 151–168. https://doi.org/10.1016/S0022-1694(01)00375-4

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., ... & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014-1015.

Devito, K. J., Hokanson, K. J., Moore, P. A., Kettridge, N., Anderson, A. E., Chasmer, L., Hopkinson, C., Lukenbach, M. C., Mendoza, C. A., Morissette, J., Peters, D. L., Petrone, R. M., Silins, U., Smerdon, B., & Waddington, J. M. (2017). Landscape controls on long-term runoff in subhumid heterogeneous Boreal Plains catchments. Hydrological Processes, 31(15), 2737–2751. https://doi.org/10.1002/hyp.11213

Green, R. H. (1979). Sampling design and statistical methods for environmental biologists. Wiley.

Harrell, F. E. (2021). Hmisc: Harrell Miscellaneous. R package version 4.6-0. https://CRAN.R-project.org/package=Hmisc

Harris, L. I., Moore, T. R., Roulet, N. T., & Pinsonneault, A. J. (2020). Limited effect of drainage on peat properties, porewater chemistry, and peat decomposition proxies in a boreal peatland. Biogeochemistry, 151(1), 43–62. https://doi.org/10.1007/s10533-020-00707-1

Health Canada (2020). Guidelines for Canadian Drinking Water Quality—Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.

Landry, J., & Rochefort, L. (2012). The drainage of peatlands: Impacts and rewetting techniques. Peatland Ecology Research Group.

Munir, T. M., Khadka, B., Xu, B., & Strack, M. (2017). Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology, 10(8), e1893. https://doi.org/10.1002/eco.1893

Niedermeier, A., & Robinson, J. S. (2009). Phosphorus dynamics in the ditch system of a restored peat wetland. Agriculture, Ecosystems & Environment, 131(3–4), 161–169. https://doi.org/10.1016/j.agee.2009.01.011

Nieminen, M., Sallantaus, T., Ukonmaanaho, L., Nieminen, T. M., & Sarkkola, S. (2017). Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing. Science of The Total Environment, 609, 974–981. https://doi.org/10.1016/j.scitotenv.2017.07.210

Owens, P. R., Wilding, L. P., Miller, W. M., & Griffin, R. W. (2008). Using iron metal rods to infer oxygen status in seasonally saturated soils. CATENA, 73(2), 197–203. https://doi.org/10.1016/j.catena.2007.07.009

Price, J. S., Heathwaite, A. L., & Baird, A. J. (2003). Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetlands Ecology and Management, 11(1/2), 65–83. https://doi.org/10.1023/A:1022046409485

Proctor, M. C. (2003). Malham Tarn Moss: the surface-water chemistry of an ombrotrophic bog. Field Studies, 10, 553-578.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rochefort, L., Quinty, F., Campeau, S., Johnson, K., & Malterer, T. (2003). North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11(1/2), 3–20. https://doi.org/10.1023/A:1022011027946

RStudio Team (2021). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.

Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw, K., Whittington, P., & Price, J. S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes, 22(17), 3373–3385. https://doi.org/10.1002/hyp.6931

Strack, M., Zuback, Y., McCarter, C., & Price, J. (2015). Changes in dissolved organic carbon quality in soils and discharge 10years after peatland restoration. Journal of Hydrology, 527, 345–354. https://doi.org/10.1016/j.jhydrol.2015.04.061

Tuukkanen, T., Marttila, H., & Kløve, B. (2017). Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression: Predicting variations in water quality. Water Resources Research, 53(7), 5860– 5876. https://doi.org/10.1002/2017WR020557

Walbridge, M. R., & Lockaby, B. G. (1994). Effects of forest management on biogeochemical functions in southern forested wetlands. Wetlands, 14(1), 10–17. https://doi.org/10.1007/BF03160617

Waldron, S., Flowers, H., Arlaud, C., Bryant, C., & McFarlane, S. (2009). The significance of organic carbon and nutrient export from peatland dominated landscapes subject to disturbance, a stoichiometric perspective. Biogeosciences, 6(3), 363–374. https://doi.org/10.5194/bg-6- 363-2009

Wells, E. D., & Williams, B. L. (1996). Effects of drainage, tilling and PK-fertilization on bulk density, total N, P, K, Ca and Fe and net N- mineralization in two peatland forestry sites in Newfoundland, Canada. Forest Ecology and Management, 84(1–3), 97–108. https://doi.org/10.1016/0378-1127(96)03741-3

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

Williams, R. T., & Crawford, R. L. (1983). Effects of various physiochemical factors on microbial activity in peatlands: Aerobic biodegradative processes. Canadian Journal of Microbiology, 29(10), 1430–1437. https://doi.org/10.1139/m83-219

Worrall, F., Armstrong, A., & Holden, J. (2007). Short-term impact of peat drain-blocking on water colour, dissolved organic carbon concentration, and water table depth. Journal of Hydrology, 337(3–4), 315–325. https://doi.org/10.1016/j.jhydrol.2007.01.046