Publications

Refereed Papers

(also see Google Scholar, ResearcherID, ORCID

*Corresponding author, Student and postdoctoral advisees 


2024

55. Fong-Jyun Jhong, Chao-Chih Chen, Wen-Pin Hsieh*, and Miin-Jang Chen*, ”High thermal conductivity near phonon ballistic transport of nanoscale AlN thin films prepared by atomic layer annealing,” submitted

54. Yu-Hsiang Chien, Enrico Marzotto*, Yi-Chi Tsao, and Wen-Pin Hsieh*, “Anisotropic thermal conductivity of antigorite along slab subduction impacts seismicity of intermediate-depth earthquakes,” Nat. Commun., 15, 5198 (2024). 

53. Wei-Han Tsai, Cheng-Lung Chen*, Krishna Ranganayakulu Vankayala, Ying-Hsiang Lo, Wen-Pin Hsieh, Te Hsien Wang, Ssu-Yen Huang, and Yang-Yuan Chen*, “Enhancement of ZT in Bi0.5Sb1.5Te3 thin film through lattice orientation management,” Nanomaterials, 14, 747 (2024).

52. J. M. Guerrero*, Frédéric Deschamps*, Wen-Pin Hsieh, and Paul J. Tackley, “The combined effect of heterogeneous thermal conductivity, chemical density contrast, and heat-producing element enrichment on the stability of primordial reservoirs above the core-mantle boundary,” Earth Planet. Sci. Lett., 637, 118699 (2024).

51. Shah Faisal, S. Majid*, A. Ahad, F. Sofi, S. Mohanta, M. Gupta, P. Sahu, Wen-Pin Hsieh, H. Srivastava, M. Ikram, and D. Shukla, “Photocatalytic activity of BaAl2O4 for water purification,” Langmuir, 40, 8418 (2024).

50. Wen-Pin Hsieh*, Frédéric Deschamps*, Yi-Chi Tsao, Takashi Yoshino, and Jung-Fu Lin, ”A thermally conductive Martian core with implications for its dynamo cessation,” Sci. Adv., 10, eadk1087 (2024). 

49. Wen-Pin Hsieh*, Yun-Yuan Chang*, Yi-Chi Tsao, Chun-Hung Lin, and Kenny Vilella, “Exceptionally low thermal conduction of basaltic glasses and implications for the thermo-chemical evolution of the Earth's primitive magma ocean,”, J. Geophys. Res. Solid Earth, 129, e2023JB027722 (2024)

48. Yu-Ping Hung, Yi-Chi Tsao, Chun-Hung Lin, and Wen-Pin Hsieh*, ”Thermal conductivity of aluminous garnets in Earth’s deep interior,” American Mineralogist, 109, 482 (2024)



2023

47. Sean R. Shieh*, Wen-Pin Hsieh*, and Yi-Chi Tsao, ”Thermal conductivity of hydrogen at high pressure and high temperature: implications to giant planets ,” Geophys. Res. Lett., 50, e2023GL103994 (2023).   

46. S. R. Sahu, S. S. Majid, A. Ahad, A. Tripathy, K. Dey, S. Pal, B. K. De, Wen-Pin Hsieh, R. Rawat, V. G. Sathe, and D. K. Shukla, ”Kinetically-decoupled electrical and structural phase transitions in VO2,” Phys. Rev. B, 107, 134106 (2023).

45. J. M. Guerrero*, F. Deschamps*, Y. Li, Wen-Pin Hsieh, and P. J. Tackley, ”Influence of heterogeneous conductivity on the long-term evolution of the lower mantle thermo-chemical structure: implications for primordial reservoirs,” Solid Earth, 14, 119 (2023).


2022

44. Wen-Pin Hsieh*, Yi-Chi Tsao, and Chun-Hung Lin, ”Thermal conductivity of helium and argon at high pressure and high temperature" (invited), Materials, 15, 6681 (2022).

43. Yongjian Zhou, Wen-Pin Hsieh, Chao-Chih Chen, Xianghai Meng, Fei Tian, Zhifeng Ren, Li Shi, Jung-Fu Lin, and Yaguo Wang*, ”Defect modulated thermal behavior of BAs under high pressure,” Appl. Phys. Lett., 121, 121902 (2022).

42. Wen-Pin Hsieh*, Enrico Marzotto, Takayuki Ishii, Leonid Dubrovinsky, Alena A. Aslandukova, Giacomo Criniti, Yi-Chi Tsao, Chun-Hung Lin, Jun Tsuchiya, and Eiji Ohtani*, ”Low thermal conductivity of hydrous phase D leads to a self-preservation effect within a subducting slab,” J. Geophys. Res. Solid Earth, 127, e2022JB024556 (2022). 

41. Cheng-Lung Chen*, Te-Hsien Wang, Yu Zih-Gin, Yohanes Hutabalian, Ranganayakulu K.Vankayala, Chao-Chih Chen, Wen-Pin Hsieh, Horng-Tay Jeng, Da-Hua Wei, and Yang-Yuan Chen*, ”Modulation doping enables ultrahigh power factor and thermoelectric ZT in n-type Bi2Te2.7Se0.3,” Adv. Sci., 9, 2201353 (2022). 

40. Yang Li*, Frédéric Deschamps*, Zhidong Shi, Joshua Guerrero, Wen-Pin Hsieh, Liang Zhao, and Paul Tackley, ”Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in the Earth's lower mantle,” Earth, Planets and Space, 74, 46 (2022).

39. Wen-Pin Hsieh*, Enrico Marzotto, Yi-Chi Tsao, Takuo Okuchi, and Jung-Fu Lin*, “High thermal conductivity of stishovite promotes rapid warming of a sinking slab in Earth’s mantle,” Earth Planet. Sci. Lett., 584, 117477 (2022).

38. Sean R. Shieh*, Wen-Pin Hsieh*, Yi-Chi Tsao, Christian Crisostomo, and Han Hsu*, ”Low thermal conductivity of carbon dioxide at high pressure: implications for icy planetary interiors,” J. Geophys. Res. Planets, 127, e2022JE007180 (2022). 

37. Dylan W. Meyer*, Wen-Pin Hsieh, Han Hsu, Ching-Yi Kuo, and Jung-Fu Lin, “Thermal conductivity and compressional velocity of methane at high pressure: insights into thermal transport properties of icy planet interiors,” J. Geophys. Res. Planets, 127, e2021JE007059 (2022).

36. Yu-Hsiang Chien*, Kai-Chi Wei, and Wen-Pin Hsieh*, “Thermal conductivity of single-crystal brucite at high pressures with implications for thermal anomaly in the shallow lower mantle,” American Mineralogist, 107, 790 (2022).

35. Yan Zhou, Zuo-Yuan Dong, Wen-Pin Hsieh, Alexander F. Goncharov, and Xiao-Jia Chen*, ”Thermal conductivity of materials under pressure,” Nat. Rev. Phys., 4, 319 (2022).

34. Han-Ting Liao, Bo-Wei Shih, Wen-Pin Hsieh, Dung-Yue Su, and Feng-Yu Tsai*, ”Enhanced thermoelectric properties of atomic-layer-deposited ZnO-based superlattice thin films by tuning the composition and structure of interlayers,” Ceramics International 48, 10202 (2022).


2021

33. Ying-Yu Wang, Ding-Rui Chen, Jen-Kai Wu, Tian-Hsin Wang, Chiashain Chuang, Ssu-Yen Huang, Wen-Pin Hsieh, Mario Hofmann, Yuan-Huei Chang, and Ya-Ping Hsieh*, “2D mechano-thermoelectric heterojunctions for self-powered strain sensors,” Nano Lett. 21, 6990 (2021).

32. Wen-Pin Hsieh*, “High-pressure thermal conductivity and compressional velocity of NaCl in B1 and B2 phase,” Sci. Rep., 11, 21321 (2021).

31. Shih-Chieh Hsu, Jhen-Yong Hong, Cheng-Lung Chen, Sheng-Chi Chen*, Jia-Han Zhen, Wen-Pin Hsieh, Yang-Yuan Chen, and Tung-Han Chuag*, “The structures and thermoelectric properties of Zn-Sb alloy films fabricated by electron beam evaporation through an ion beam assisted deposition,” Appl. Surf. Sci. 540, 148264 (2021).


2020

30. Wen-Pin Hsieh*, Alexander F. Goncharov*, Stephane Labrosse, Nicholas Holtgrewe, Sergey S. Lobanov, Irina Chuvashova, Frédéric Deschamps, and Jung-Fu Lin*, “Low thermal conductivity of iron-silicon alloys at Earth’s core conditions with implications for the geodynamo,” Nat. Commun., 11, 3332 (2020).

Highlighted in https://carnegiescience.edu/news/how-does-earth-sustain-its-magnetic-field and https://phys.org/news/2020-07-earth-sustain-magnetic-field.html 

29. Enrico Marzotto*, Wen-Pin Hsieh*, Takayuki Ishii, Keng-Hsien Chao, Gregor J. Golabek, Marcel Thielmann, and Eiji Ohtani*, ”Effect of water on lattice thermal conductivity in ringwoodite and its implications for the thermal evolution of descending slabs,” Geophys. Res. Lett., 47, e2020GL087607 (2020)

28. Bo-Wei Shih, Wen-Pin Hsieh, Jing-Jong Shyue, Feng-Yu Tsai*, ” Enhanced thermoelectric properties of atomic-layer-deposited Hf:Zn16O/18O superlattice films by interface-engineering,” Ceramics International 46, 7122 (2020).

27. Wen-Pin Hsieh*, Takayuki Ishii, Keng-Hsien Chao, Jun Tsuchiya, Frédéric Deschamps, and Eiji Ohtani*, ”Spin transition of iron in δ-(Al,Fe)OOH induces thermal anomalies in Earth’s mantle,” Geophys. Res. Lett., 47, e2020GL087036 (2020).


2019

26. Jen-Kai Wu, Mario Hofmann, Wen-Pin Hsieh, Szu-Hua Chen, Zhi-Long Yen, Sheng-Kuei Chiu, Yi-Ru Luo, Chih-Chieh Chiang, Ssu-Yen Huang, Yuan-Huei Chang*, and Ya-Ping Hsieh*, ”Enhancing thermoelectric properties of 2D Bi2Se3 by 1D texturing with graphene,” ACS Appl. Energy Mater. 2,8411 (2019).

25. Deniz P. Wong*, Masoud Aminzare, Ta-Lei Chou, Chin-Sheng Pang, Yi-Ren Liu, Tzu-Hsien Shen, Benjamin K. Chang, Hsiang-Ting Lien, Sun-Tang Chang, Chia-Hua Chien, YangYuan Chen, Ming-Wen Chu, Yaw-Wen Yang, Wen-Pin Hsieh, Gerda Rogl, Peter Franz Rogl, Yohei Kakefuda, Takao Mori, Mei-Yin Chou, Li-Chyong Chen*, and Kuei-Hsien Chen*, “Origin of band modulation in GeTe-rich Ge-Sb-Te thin film,” ACS Appl. Electron. Mater. 1, 2619 (2019).

24. Daniel Olaya, Chien-Chih Tseng, Wen-Hao Chang, Wen-Pin Hsieh, Lain-Jong Li, Zhen-Yu Juang*, and Yenny Hernandez*, “Cross-plane thermoelectric figure of merit in graphene-C60 heterostructures at room temperature,” FlatChem 14, 100089 (2019).

23. Xianghai Meng, Tribhuwan Pandey, Jihoon Jeong, Suyu Fu, Jing Yang, Ke Chen, Akash Singh, Feng He, Xiaochuan Xu, Jianshi Zhou, Wen-Pin Hsieh, Abhishek K. Singh, Jung-Fu Lin*, and Yaguo Wang*, “Thermal conductivity enhancement in MoS2 under extreme strain,” Phys. Rev. Lett., 122, 155901 (2019).

22. Frédéric Deschamps* and Wen-Pin Hsieh, “Lowermost mantle thermal conductivity constrained from experimental data and tomographic models,” Geophys. J. Int. 219, S115 (2019).

21. Jihoon Jeong, Xianghai Meng, Ann Rockwell, Seth Bank, Wen-Pin Hsieh, Jung-Fu Lin*, and Yaguo Wang*, “Picosecond transient thermoreflectance for thermal conductivity characterization,” Nanoscale and Microscale Thermophysical Engineering, 23, 211 (2019).

20. Keng-Hsien Chao and Wen-Pin Hsieh*, “Thermal conductivity anomaly in (Fe0.78Mg0.22)CO3 siderite across spin transition of iron,” J. Geophys. Res. Solid Earth, 124, 1388 (2019).


2018

19. Wen-Pin Hsieh*, Frédéric Deschamps, Takuo Okuchi, and Jung-Fu Lin*, “Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics,” Proc. Natl. Acad. Sci. USA, 115, 4099 (2018).


2017

18. Wen-Pin Hsieh*, Frédéric Deschamps, Takuo Okuchi, and Jung-Fu Lin*, “Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth’s deep lower mantle,” J. Geophys. Res. Solid Earth, 122, 4900 (2017). (Selected as a featured article in JGR)

17. Zhen-Yu Juang, Chien-Chih Tseng, Yumeng Shi, Wen-Pin Hsieh, Sou Ryuzaki, Noboru Saito, Chia-En Hsiung, Wen-Hao Chang, Yenny Hernandez, Yu Han, Kaoru Tamada, and Lain-Jong Li*, “Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high-ZT thermoelectric devices,” Nano Energy 38, 385 (2017).

16. Yun-Yuan Chang, Wen-Pin Hsieh*, Eh Tan, and Jiuhua Chen, “Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle,” Proc. Natl. Acad. Sci. USA, 114, 4078 (2017).


2015

15. Wen-Pin Hsieh* and Frédéric Deschamps, “Thermal conductivity of H2O-CH3OH mixtures at high pressures: implications for the dynamics of icy super-Earths outer shells,” J. Geophys. Res. Planets, 120, 1697 (2015).

14. Wen-Pin Hsieh*, “Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures,” J. Appl. Phys. 117, 235901 (2015).

13. R. B. Wilson, Brent A. Apgar, Wen-Pin Hsieh, Lane W. Martin, and David G. Cahill, “Thermal conductance of strongly bonded metal-oxide interfaces,” Phys. Rev. B 91, 115414 (2015).

12. Wen-Pin Hsieh* and Yu-Hsiang Chien, “High pressure Raman spectroscopy of H2O-CH3OH mixtures,” Sci. Rep. 5, 8532 (2015).


Prior to Academia Sinica

11. Wen-Pin Hsieh*, Mariano Trigo, David Reis, G. Artioli, Lorenzo Malavasi, and Wendy L. Mao, “Evidence for photo-induced monoclinic metallic VO2 under high pressure,” Appl. Phys. Lett. 104, 021917 (2014).

Highlighted in http://simes.stanford.edu/highlights/creation-of-a-novel-high-pressure-transient-state-sheds-new-light-onthe-insulator-to-metal-transition-in-vo2/

10. D. Allen Dalton, Wen-Pin Hsieh, Gregory Hohensee, David G. Cahill, and A. F. Goncharov, “Effects of mass disorder on the lattice thermal conductivity of MgO periclase under pressure,” Sci. Rep. 3, 2400 (2013).

9. Wen-Pin Hsieh*, Peter Zaldan, M. Wuttig, Aaron Lindenberg, and Wendy L. Mao, “High pressure Raman spectroscopy of phase change materials,” Appl. Phys. Lett. 103, 191908(2013).

8. Gregory Hohensee, Wen-Pin Hsieh, Mark D. Losego, and David G. Cahill, “Interpreting picosecond acoustics in the case of low interface stiffness,” Rev. Sci. Instrum. 83, 114902 (2012).

7. Wen-Pin Hsieh*, Austin Lyons, Eric Pop, Pawel Keblinski, and David G. Cahill, “Pressure tuning of the thermal conductance of weak interfaces,” Phys. Rev. B 84, 184107 (2011).

6. Wen-Pin Hsieh* and David G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys. 109, 113520 (2011). (Selected in the Virtual Journal of Ultrafast Science, July 2011)

5. Wen-Pin Hsieh*, Mark D. Losego, Paul V. Braun, Sergei Shenogin, Pawel Keblinski, and David G. Cahill, “Testing the minimum thermal conductivity model for amorphous polymers using high pressure,” Phys. Rev. B 83, 174205 (2011).

4. Bin Chen, Wen-Pin Hsieh, David G. Cahill, Dallas Trinkle, and Jie Li, “Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried-Schlömann equation,” Phys. Rev. B 83, 132301(2011).

3. Wen-Pin Hsieh*, B. Chen, J. Li, P. Keblinski, and David G. Cahill, ”Pressure tuning of the thermal conductivity of the layered muscovite crystal,” Phys. Rev. B 80, 180302(R) (2009). (Selected as Editor’s Suggestion)

2. Wen-Pin Hsieh and Y. L. Wang*, “Prolonged electron emission as a method to fabricate a stable and bright dual ion/electron point source,” Appl. Phys. Lett. 87, 194107 (2005).

1. Wen-Pin Hsieh, B. L. Sheu, and Y. L. Wang*, “Emission properties of a dual point emitter based on In-Bi alloy,” Appl. Phys. Lett. 83, 2277 (2003).


Thesis

Wen-Pin Hsieh, “Testing theories for thermal transport using high pressure,” Ph. D. Thesis, University of Illinois, Urbana-Champaign (2011).

Wen-Pin Hsieh, “Fabrication and emission properties of stable dual ion/electron point sources,” Master Thesis, NTU (2005).

--

Last updated on April 30, 2024