Nicolas Joly, CNRS CR1, HDR. / WebSite

Background:  I did my PhD Thesis in Pr Pugsley's laboratory (Pasteur Institute, Paris) under the guidance of Dr Richet, focusing on the transcriptional regulation of the maltose regulon. In 2015, I moved in London as Postdoctoral Fellow in Pr Buck laboratory (Imperial College London) where I focused on understanding the transcriptional regulation of the Phage-shock-protein (Psp) system of Escherichia coli, an extracytoplasmic stress response that is essential for the survival and then virulence of several bacteria. In 2011, I joined Dr Strick laboratory (Institut Jacques Monod, Paris) as permanent CNRS researcher and I focused on the study of the Heat Shock system in Myxococcus Xanthus.

My current work: I have joined Lionel Pintard’s laboratory in January 2015. The general goal of my research is to study the role and regulation of the Katanin (an AAA+ microtubule-severing enzyme) during the female meiosis in Caenorhabditis elegans.


38. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.
Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J, Joly N, Desai A, Doye V, Pintard L.
Dev Cell. 2017 Oct 23;43(2):157-171.e7. doi: 10.1016/j.devcel.2017.09.019. PMID: 29065307 

 Guanine glycation repair by DJ-1/Park7 and its bacterial homologs.
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A.
Science. 2017 Jun 8. pii: eaag1095. doi: 10.1126/science.aag1095. PMID: 28596309

Microtubule-severing activity of AAA-ATPase Katanin is essential for female meiotic spindle assembly.
Joly N#, Martino L, Gigant E, Dumont J, Pintard L#. 
(#co-corresponding authors)
Development. 2016 Aug 30. pii: dev.140830.

35. Cdk1 Phosphorylates SPAT-1/Bora to Promote Plk1 Activation in C. elegans and Human Cells.
Thomas Y, Cirillo L, Panbianco C, Martino L, Tavernier N, Schwager F, Van Hove L, Joly N, Santamaria A, Pintard L, Gotta M.
Cell Rep. 2016 Apr 5. pii: S2211-1247(16)30320-5. doi: 10.1016/j.celrep.2016.03.049.

34. In vitro and in vivo methodologies for studying the sigma 54-dependent transcription.
Buck M, Engl C, Joly N, Jovanovic G, Jovanovic M, Lawton E, McDonald C, Schumacher J, Waite C, Zhang N.
Methods Mol Biol. 2015;1276:53-79.

33. Molecular basis of nucleotide-dependent substrate engagement and remodeling by an AAA+ activator.
Darbari VC, Lawton E, Lu D, Burrows PC, Wiesler S, Joly N, Zhang N, Zhang X, Buck M.
Nucleic Acids Res. 2014 Jul 25.

32. Determination of the self-association residues within a Homomeric and a Heteromeric AAA+Enhancer Binding Protein.
Lawton E, Jovanovic M, Joly N, Waite C, Zhang N, Wang B, Burrows P, Buck M.
J Mol Biol. 2014 Apr 17;426(8):1692-710.

31. Subunit Dynamics and Nucleotide-Dependent Asymmetry of an AAA+ Transcription Complex.
Zhang N, Gordiyenko Y, Joly N, Lawton E, Robinson CV, Buck M.
J Mol Biol. 2014 Jan 9;426(1):71-83. 

30. Mfd as a central partner of transcription coupled repair.
Monnet J, Grange W, Strick TR#, Joly N#. (#co-corresponding authors)
Transcription. 2013. 4(3).

29. A key hydrophobic patch identified in an AAA⁺ protein essential for its in trans inhibitory regulation.
Zhang N, Simpson T, Lawton E, Uzdavinys P, Joly N, Burrows P, Buck M.
J. Mol. Biol. 2013 425(15):2656-69.

28. Initiation of transcription-coupled repair characterized at single-molecule resolution. 
Howan K, Smith AJ, Westblade LF, Joly N, Grange W, Zorman S, Darst SA, Savery NJ, Strick TR.
Nature. 2012 Sep 9. doi: 10.1038/nature11430. 

27. ATPase Site Architecture Is Required for Self-Assembly and Remodeling Activity of a Hexameric AAA+ Transcriptional Activator. 
Joly N#, Zhang N, Buck M#. (#co-corresponding authors)
Mol Cell. 2012 Jul 10. 

26. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements.
Zhang N, Joly N#, Buck M#. (#co-corresponding authors)
Nucleic Acids Res. 2012 Jul 5.

25. The ABC transporter MalFGK(2) sequesters the MalT transcription factor at the membrane in the absence of cognate substrate.
Richet E, Davidson AL, Joly N.
Mol Microbiol. 2012 Jun 20. doi: 10.1111/j.1365-2958.2012.08137.x. [Epub ahead of print] 

24. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. 
Wang B, Kitney RI, Joly N, Buck M. 
Nat Commun. 2011 Oct 18;2:508. doi: 10.1038/ncomms1516. PMID: 22009040 [PubMed - in process]

23. Coupling AAA protein function to regulated gene expression. 
Joly N, Zhang N, Buck M, Zhang X. 
Biochim Biophys Acta. 2011 Aug 31.

22. Single chain forms of the enhancer binding protein PspF provide insights into geometric requirements for gene activation. 
Joly N#, Buck M#. (#co-corresponding authors)
J Biol Chem. 2011 Apr 8;286(14):12734-42.

21. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. 
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MP, Buck M. 
FEMS Microbiol Rev. 2010 Sep;34(5):797-827. Review. 

20. A prehydrolysis state of an AAA+ ATPase supports transcription activation of an enhancer-dependent RNA polymerase. 
Burrows PC, Joly N, Buck M. 
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9376-81. Epub 2010 May 3. 

19. Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism. 
Joly N#, Buck M#. (#co-corresponding authors)
J Biol Chem. 2010 May 14;285(20):15178-86. 

18. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. 
Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. 
J Mol Biol. 2009 Dec 11;394(4):764-75. 

17. The role of the conserved phenylalanine in the sigma54-interacting GAFTGA motif of bacterial enhancer binding proteins. 
Zhang N, Joly N#, Burrows PC, Jovanovic M, Wigneshweraraj SR, Buck M#. (#co-corresponding authors)
Nucleic Acids Res. 2009 Oct;37(18):5981-92. 

16. Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues. 
Burrows PC, Joly N, Nixon BT, Buck M. 
Nucleic Acids Res. 2009 Aug;37(15):5138-50. 

15. Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting. 
Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M. 
J Mol Biol. 2009 Mar 27;387(2):306-19. 

14. Visualizing the organization and reorganization of transcription complexes for gene expression. 
Burrows PC, Wigneshweraraj S, Bose D, Joly N, Schumacher J, Rappas M, Pape T, Stockley PG, Zhang X, Buck M. 
Biochem Soc Trans. 2008 Aug;36(Pt 4):776-9. 

13. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. 
Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. 
J Mol Biol. 2008 Aug 1;381(1):1-12. 

12. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. 
Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M. 
Mol Microbiol. 2008 May;68(3):538-46. Review. 

11. An intramolecular route for coupling ATPase activity in AAA+ proteins for transcription activation. 
Joly N, Burrows PC, Buck M. 
J Biol Chem. 2008 May 16;283(20):13725-35. 

10. Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins. 
Bose D, Joly N, Pape T, Rappas M, Schumacher J, Buck M, Zhang X. 
Biochem Soc Trans. 2008 Feb;36(Pt 1):83-8. Review. 

9. Trapping of a transcription complex using a new nucleotide analogue: AMP aluminium fluoride. 
Joly N*, Rappas M*, Buck M, Zhang X. (*equal contribution)
J Mol Biol. 2008 Feb 1;375(5):1206-11. 

8. Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein. 
Joly N, Rappas M, Wigneshweraraj SR, Zhang X, Buck M. 
Mol Microbiol. 2007 Nov;66(3):583-95. 

7. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. 
Schumacher J, Joly N, Rappas M, Bradley D, Wigneshweraraj SR, Zhang X, Buck M. 
J Biol Chem. 2007 Mar 30;282(13):9825-33. 

6. A second paradigm for gene activation in bacteria. 
Buck M, Bose D, Burrows P, Cannon W, Joly N, Pape T, Rappas M, Schumacher J, Wigneshweraraj S, Zhang X. 
Biochem Soc Trans. 2006 Dec;34(Pt 6):1067-71. 

5. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. 
Joly N, Schumacher J, Buck M. 
J Biol Chem. 2006 Nov 17;281(46):34997-5007. 

4. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. 
Schumacher J, Joly N, Rappas M, Zhang X, Buck M. 
J Struct Biol. 2006 Oct;156(1):190-9. Review. 

3. Two domains of MalT, the activator of the Escherichia coli maltose regulon, bear determinants essential for anti-activation by MalK. 
Richet E, Joly N, Danot O. 
J Mol Biol. 2005 Mar 18;347(1):1-10. 

2. MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator malt by antagonizing inducer binding. 
Joly N, Böhm A, Boos W, Richet E. 
J Biol Chem. 2004 Aug 6;279(32):33123-30. Erratum in: J Biol Chem. 2004 Oct 15;279(42):44229. 

1. The Aes protein directly controls the activity of MalT, the central transcriptional activator of the Escherichia coli maltose regulon. 
Joly N, Danot O, Schlegel A, Boos W, Richet E. 
J Biol Chem. 2002 May 10;277(19):16606-13.