Theory: 70%; Laboratory: 30%.
Theory(70%): Quiz:14%. Mid-semester: 36%; Ensemester: 50%.
Lecture 1(31.12.2024): Introduction to Artificial Intelligence (AI)
Lecture 2(01.01.2025): Multidimentional Definition of AI and Turing Test
Lecture 3 (06.01.2025): AI and Machine Learning : Supervised Learing Lecture Slides
Lecture 4(07.01.2025): Definition of Classifier and Decision Tree Induction Learing Lecture Slides
Lecture 5(08.01.2025): Various Measure to compute Impurity of Nodes of Decision Tree Lecture Slides
Lecture 6(13.01.2025): Model Overfitting and Cause of Model Overfitting , Addressing Model Overfitting by Estimating Generalization Error Lecture Slides
Lecture 7(14.01.2025): Bayes Classifiers Lecture Slides
Lecture 8 (15.01.2025): Distance based Classifiers: KNN, Weighted KNN Lecture Slides
Lecture 9 (20.01.2025): Introduction Support Vector Machine Classifier Scribed Lecture Video of Prof Patrick Winston, MIT [ Suggested to watch 0-38.34 th Minutes]
Lecture 10 (21.01.2025) : Support Vector Machine Classifier and Convex Optimization Lecture Video Lecture Notes
Lecture 11 (22.01.2025) : Support Vector Machine Classifier Lecture Slides Scribed
(Online Quadratic Optimization Solver)
Lecture 12(27.01.2025): Numerical Examples : Linear Support Vector Machine Scribed Lecture
Lecture 13(28.01.2025): Linear SVM with Non Separable Decision Hyperplane and Non Linear Support Vector Machine Lecture Slide
Lecture 14(29.01.2025): Introduction to Unsupervised Learning: K-means Clustering Lecture Slides
Lecture 15(04.02.2025): Higherarchical Clustering. Lecture Slides
Lecture 16(05.02.2026): Density based Clustering: DBSCAN Lecture Slides
MID-TERM EXAMINATION: 12.02.2025
Lecture 17(18.02.2025): Intelligent Agent and Concept of Rationality Lecture Slides
Lecture 18(19.02.2025): Problem Solving Agent and Uninformed Search Lecture Slides
Lecture 19(24.02.2025): Uninformed Search Lecture Slides
Lecture 20(25.02.2025): Informed Search: A* Search Lecture Slides
Lecture 21(03.03.2025): A* Search: Few Examples Lecture Slides
Lecture 22(04.03.2025): A* Search: Few Examples
Lecture 23 (05.03.2025): Local Search Algorithms: Hill-climbing search Lecture Slides
Lecture 24 (17.03.2025): AO* and Min-Max Algorithm Lecture Slides
Lecture 25 (19.03.2025): AO* and Min-Max Algorithm Lecture Slides
Lecture 26 (24.03.2025): Density Based Clustering, Cluster Validity Evaluation Metrics of Clustering Techniques I
Lecture 27 (25.03.2025): Ensemble of Classifier: Bagging
Lecture 29 (26.03.2025): Ensemble of Classifier: Boosting
Lecture 30 (07.042025): Artificial Neural Network I
Lecture 31 (08.04.2025): Artificial Neural Network II
Lecture 32 (09.04.2025):
Lecture 33 (15.04.2025):
Lecture 34 (16.04.2025):