九州大学伊都キャンパスにて不定期に現象数理セミナー(NPAセミナー)を開催しています。応用や現象に関連した解析の話題を広く取り上げる予定です。多くの方々のご参加をお待ちしております。
セミナー幹事:手老篤史、福本康秀(九大MI研究所)
連絡先:手老 篤史(tero(at)imi.kyushu-u.ac.jp)
現象数理セミナー予定
通常 木曜不定期15:30-17:00・
(日時・場所は変更になることがあります)
ホームページ担当者変更により、アドレスが変わりました。
以前のホームページアドレスは下のリンクより移動してください。
https://sites.google.com/site/npaseminar/
*************************************************************
第112回現象数理セミナー
日時:11月18日(火) 14:00-15:00
会場:九州大学伊都キャンパス ウエスト1号館7階D棟 D-710
講演者:Philip Kurian (Quantum Biology Laboratory, Howard University)
題目:From slime molds to the stars : Morphological computational capacity of Physarum polycephalum
要旨:
As physical systems, all life in the universe processes information according to physical laws. Estimates for the computational capacity of living systems generally assume that the fundamental information-processing unit is the Hodgkin-Huxley neuron. However, Physarum polycephalum, a unicellular, multinucleated amoeba, is capable of complex problem-solving despite lacking neurons [1, 2]. By analyzing growth dynamics in two distinct Physarum strains under diverse biological conditions, we map morphological evolution to information processing (Fig. 1). As the Margolus-Levitin theorem constrains maximum computation rates by accessible energies, we analyze high-throughput time-series data of Physarum's morphology—quantified through area, perimeter, circularity, and fractal dimension—to determine upper bounds on the logical operations achievable through hydromechanical, chemical, kinetic, and quantum-optical degrees of freedom [3-6]. Fourier and power spectral density analyses of Physarum while solving the traveling salesman problem also reveal signatures of Fröhlich condensation in the optically pumped, non-equilibrium steady state [2].
Our analytical results for helical distributions of quantum emitters [4], numerical simulations of protein fiber networks [4-6], and experimental validation of superradiant quantum yield enhancements in microtubules [5] suggest that tryptophan lattices in diverse protein fibers exhibit observable and robust effects with increasing length, due to quantum coherent interactions in the single-photon limit. Superradiant enhancement and high quantum yield in neuroprotein polymers would thus play a crucial role in information processing in the brain [3], photoprotection in the onset of Alzheimer's and related dementias [6], and a wide array of other pathologies characterized by anomalous protein aggregates. Our results motivated a revisiting of the computing limits of cytoskeletal architectures [3], where superradiant states in these tryptophan lattices allow information-processing pulses at orders of magnitude faster speeds than conventional Hodgkin-Huxley chemical potential spikes, at significantly lower power consumptions, by operating within two orders of magnitude of the Margolus-Levitin quantum speed limit for ultraviolet-excited states. The robustness of superradiant states (~picosecond) complemented by subradiant states (~seconds to minutes) in these protein architectures thus offers a novel paradigm for understanding the role of large collectives of quantum emitters in warm, wet, and wiggly environments, and it may illuminate the vast computational capacities of both neural and aneural organisms [1-3] in the search for life on other habitable planets.
****************************************************************
セミナーHP:
https://sites.google.com/site/npaseminar2/
セミナー幹事:手老篤史、福本康秀(九大MI研究所)
連絡先:手老 篤史(tero(at)imi.kyushu-u.ac.jp)
_______________________________________________
Npa mailing list