Тема урока: Строение атома. Постулаты Бора. Лазеры. Спектры.
Сегодня на уроке мы изучим такую немаловажную тему как строение атома,этих мельчайших частиц из которых состоит все что нас окружает и даже мы с вами.
www.youtube.com/embed/fIPn01HAVYs
Различая два вида частиц материи, он дает им названия «элементы» (равные понятию «атом») и «корпускулы» (равные понятию «молекула»). По Ломоносову. «элемент есть часть тела, не состоящая из каких-либо других меньших частиц», а «корпускула есть собрание элементов в одну небольшую массу».
На исходе 19-го века было проведено много опытов по изучению электрического разряда в разреженных газах. Разряд возбуждался между катодом и анодом, запаянными внутри стеклянной трубки, из которой был откачан воздух. При достаточно большой разности потенциалов между катодом и анодом наблюдалось свечение газа внутри трубки. При сильном разрежении (создании вакуума) свечение внутри трубки исчезало, темная область вокруг катода расширялась, пока не достигала противоположного конца трубки, который начинал после этого светиться (цвет свечения зависел от сорта стекла). То, что проходило от катода и заставляло светиться стеклянный экран, было названо катодными лучами.
Чтобы определить природу катодных лучей, английский физик Джозеф Джон Томсон (1856-1940) проводит следующий эксперимент. Его экспериментальная установка представляет собой вакуумную электронно-лучевую трубку (рис.). Накаливаемый катод К является источником катодных лучей, которые ускоряются электрическим полем, существующим между анодом А и катодом К. В центре анода имеется отверстие. Катодные лучи, прошедшие через это отверстие и движущиеся прямолинейно со скоростью v, попадают в точку G на стенке трубки S напротив отверстия в аноде. Если стенка S покрыта флуоресцирующим веществом, то попадание частиц в точку G проявляется как светящееся пятнышко. На пути от A к G частицы проходят между пластинами конденсатора CD, к которым может быть приложено напряжение от батареи.
Если включить эту батарею, то пучок частиц отклоняется её электрическим полем и на экране S возникает пятнышко в положении G1. Создавая в области между пластинами конденсатора ещё и однородное магнитное поле, перпендикулярное плоскости рисунка (оно изображено точками), можно вызвать отклонение пятнышка в том же или обратном направлении. Томсон обнаружил, что катодные лучи ведут себя как отрицательно заряженные частицы: «Поскольку катодные лучи несут отрицательный заряд, отклоняются под действием электростатической силы, как если бы они были отрицательно заряженными, и реагируют на магнитную силу точно так же, как реагировали бы на неё отрицательно заряженные тела, двигавшиеся вдоль линии распространения лучей, я не могу не прийти к заключению, что катодные лучи суть заряды отрицательного электричества, переносимые частицами материи. Тогда встаёт вопрос: что это за частицы? Являются ли они атомами, молекулами или материей в более тонком состоянии разделения? С целью пролить некоторый свет на этот вопрос я провёл целый ряд измерений отношений массы этих частиц к величине заряда, переносимого ими»
Опыты проводились таким образом, что отклонение катодных частиц (корпускул, согласно терминологии Джозефа Джона Томпсона) электрическим полем было скомпенсировано воздействием магнитного поля (пятнышко при этом возникало в точке G). Приравняв действующие на частицы силы, можно найти отношение e/m заряда частицы к её массе. Он оказался почти в 1840 раз больше, чем удельный заряд самого лёгкого иона водорода, который был определён до этого из других опытов. Если считать, что заряд корпускулы равен по модулю заряду иона водорода (), то масса катодной частицы оказывается почти в 1840 раз меньше массы иона водорода.
Так открыли первую элементарную частицу с наименьшей величиной электрического заряда. В дальнейшем она получила название электрон. 30 апреля 1897 г., когда Джозеф Джон Томсон доложил о своих исследованиях, считается «днём рождения» электрона.
После открытия в 1897 году электрона, входящего в состав атома, был сделан вывод о сложном строении атома. Первая достаточно разработанная модель атома была предложена Томсоном. Согласно этой модели вещество в атоме несет положительный заряд и равномерно заполняет весь объем атома. Электроны «вкраплены» в атом, словно изюм в булку.
Возникал вопрос о том, как электроны распределены в атоме? Эти сведения можно было бы добыть с помощью следующего опыта. Тонкие пластинки вещества бомбардируются различными частицами, и по отклонению этих частиц можно получить сведения об атомах вещества пластинки.
В своих воспоминаниях Петр Капица писал: «Я не могу вспомнить другого ученого современника Резерфорда, в лаборатории которого воспитывалось бы столько крупных физиков. История науки показывает, что крупный ученый – это не обязательно большой человек, но крупный учитель не может не быть большим человеком».
В лаборатории Резерфорда были проведены следующие эксперименты (см. рис.). В качестве бомбардирующих частиц взяли тяжелые α –частицы, которые лучше всего подходили для изучения строения атома. Чтобы по возможности точнее исследовать единичные столкновения частиц с атомами мишени, было желательно, чтобы сама мишень была как можно тоньше. К счастью, золотая фольга обладает тем замечательным свойством, что путем расплющивания ее можно сделать исключительно тонкой, толщиной всего лишь в 400 атомов золота.
В ранних экспериментах исследовались малые углы рассеяния и было обнаружено, что практически все частицы проходили через мишень, не отклоняясь, как если бы атомы мишени были совершенно прозрачны для бомбардирующих частиц (угол отклонения порядка одного градуса).
Затем молодому сотруднику Марсдену было поручено выяснить вопрос о том, могут ли α -частицы рассеиваться на большие углы? И вот в 1909 году наступил тот зимний день, когда Марсден остановил на университетской лестнице Резерфорда и совсем буднично произнес:»Вы были правы, профессор: они возвращаются…» (Позже Резерфорд вспоминал: «Это было самым невероятным событием в моей жизни. Оно было столь же невероятным, как если бы 15-дюймовый снаряд, выпущенный в кусок папиросной бумаги, отскочил от нее и ударил бы в стреляющего»). «Они» возвращались редко: в среднем одна α-частица из восьми тысяч. Отражение от мишени означало, что α-частица встретила на пути достойную преграду – массивную и положительно заряженную: только такая может с силой оттолкнуть от себя прилетевшую гостью. Редкость события говорила о крайне малых размерах преграды. И потому, пронизывая атомы мишени, лишь немногие α-частицы попадают в массивную атомную сердцевину. Подавляющее большиство пролетает в отдалении от нее и рассеивается на малые углы.
Резерфорд «увидел» атомное ядро! В мае 1911 г. он изложил результаты экспериментальных и теоретических поисков в области строения атома.
Согласно расчетам положительный заряд атома должен быть сосредоточен в сфере радиусом порядка 10-12 см. Электроны же распределены вокруг ядра в области, размеры которой порядка 10-8 см. Электрон не может стоять на месте: иначе он упадет на ядро из-за электрического притяжения. Но электрон может вращаться вокруг ядра, и тогда мы получим своего рода солнечную систему заряженных частиц, если назвать ее так по аналогии с планетарной солнечной системой. Неужели природа так экономна? Неужели наш мир так устроен, что в качестве основы атомного строения материи лежит повторение в атомных масштабах планетарной солнечной системы?После предположения Резерфорда возник кризис, который привел к полному краху классической физики и замене ее квантовой механикой. Дело в том, что модель Резерфорда обладает одним пороком. Этот порок непреодолим, неизбежен и губителен; он вытекает непосредственно из теории Максвелла.
Особой заслугой теории Максвелла было предсказание того факта, что движущаяся с ускорением заряженная частица, например вращающийся по кругу электрон, будет излучать электромагнитные волны. Электрон, вращающийся вокруг положительного заряда в планетарной модели атома, должен излучать свет с частотой, равной частоте его обращения. Излучая свет, электрон теряет энергию. При этом он будет приближаться к положительному заряду, пока, непрерывно излучая, не упадет на ядро. Время, за которое электрон упал бы со своей орбиты на ядро, чрезвычайно мало, порядка миллиардной доли секунды, что абсолютно не согласуется с нашим ощущением устойчивости атома. Далее, излучение, испущенное электроном во время падения, было бы непрерывным, причем его частота возрастала бы с уменьшением радиуса орбиты электрона. Спектр атома был бы непрерывным, тогда как эксперимент дает линейчатый спектр для излучающего атома.
Опыты по рассеянию α-частиц показывают, что атом состоит из ядра и вращающихся вокруг него электронов. Данные электродинамики свидетельствуют, что движущиеся ускоренно заряды испускают электромагнитные волны, теряя энергию. Однако даже повседневные наблюдения говорят, что атомы устойчивы и, как правило, не излучают энергии. Возникло противоречие одних фактов другим
Это противоречие устранил Н. Бор (1913г.), создав неклассическую модель атома, базирующуюся на следующих постулатах:
I. Существуют особые стационарные состояния атома, находясь в которых атом не излучает энергию, при этом электроны в атоме движутся с ускорением. Каждому стационарному состоянию соответствует определенная энергия .
II. Излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией . Энергия излученного фотона равна разности энергий стационарных состояний:
На основе перечисленных фактов построена теоретическая модель водородоподобного атома. Для наглядного представления возможных энергетических состояний атомов используются энергетические диаграммы, на которых каждое стационарное состояние атома отмечается горизонтальной линией, называемой энергетическим уровнем. Состояние с минимальной энергией Е1 называют основным состоянием. Все остальные состояния атома с энергиями Е2, Е3, ……, ЕNназываются возбужденными состояниями. Отрицательная энергия состояний атома водорода физически означает, что атом устойчив и для его разрушения (удаления электрона от ядра на расстояние, при котором взаимодействием с ядром можно пренебречь) необходимо совершить работу. Значение Е > 0 соответствует электрону, проходящему мимо ядра и уходящему в бесконечность. Атом поглощает энергию при переходе из низших энергетических состояний в высшие.
Переходы атома на второй энергетический уровень с верхних уровней образуют серию Бальмера, которая дает видимые частоты излучения (частота излучения соответствует частоте видимого света).
Следствия
Объясняет планетарную модель Резерфорда.
Одним из следствий модели атома Бора является то, что при внешних воздействиях атомы могут получать не произвольные, а лишь вполне определенные значения энергии .
Частота излучения или поглощения равна: .Е=hv
Радиусы орбит меняются дискретно числам n=1,2,… (правило квантования).
· Эксперимент
1) Экспериментальное исследование, непосредственно доказывающее существование стационарных состояний атомов осуществили Франк и Герц.Использовалась установка, схематически изображенная на рис. Стеклянный баллон заполнен парами ртути при низком давлении и содержит катод, сетку,анод. Без ртути анодный ток растет непрерывно. При заполнении баллона парами ртути на кривой появляются несколько максимумов и минимумов. Классическая физика не в состоянии объяснить этот экспериментальный факт.
Резкое уменьшение силы тока в цепи при достижении напряжения 4,9 В между катодом и сеткой заставляет сделать вывод, что электроны теряют кинетическую энергию равную 4,9 эВ в результате столкновения с атомами ртути. При меньших значениях энергии происходят только упругие столкновения электронов с атомами ртути, при которых электроны не передают им энергию.
Исходя из этих результатов можно сделать вывод, что разность энергий возбужденного стационарного состояния и основного стационарного состояния равна 4,9 эВ. Этот вывод подтверждается еще одним эффектом. Пока напряжение между катодом и сеткой меньше 4,9 В, пары ртути не излучают. При достижении напряжения 4,9 В пары ртути испускают ультрафиолетовое излучение с частотой: ν = =1,2 ∙ 1015 Гц.
2) В видимой области спектра водорода находятся только четыре линии серии Бальмера, что подтверждается экспериментом.
Спектроскопические исследования в ультрафиолетовой и инфракрасной областях спектра обнаружили серии линий Лаймана, Пашена, Брэкета, Пфунда и ультрафиолетовую часть серии линий Бальмера. Значит теория Бора верно предсказывает реальные факты
Ограниченность теории Бора.
Теория Бора водородоподобного атома прекрасно согласуется с экспериментом. Она показала неприменимость классической физики к внутриатомным явлениям: в микромире определяющими являются квантовые законы. Однако эта теория не отменяет классическую физику.
Н. Бором в 1923 г. был сформулирован принцип соответствия, согласно которому законы квантовой физики включают в себя законы классической физики.
По теории Бора электрон, движущийся по орбите не излучает электромагнитную волну; излучение происходит при переходе электрона с одной орбиты на другую.
Сближение результатов квантовой и классической теории происходит при больших значениях квантового числа n. В этом случае уровни энергий стационарных состояний сближаются настолько, что переход атома из одного квантового состояния в соседнее становится неотличим от процесса непрерывного излучения энергии.
Однако эксперимент показывает, что закономерности оптических спектров любого атома, в котором более чем один электрон, не могут быть получены, как следствия теории Бора. Правило квантования применимо не всегда. Представление об определенных орбитах, по которым движутся электроны в атоме, оказалось условным.
К недостаткам теории Бора относится ее противоречивость: эта теория и не классическая, и не квантовая, а то и другое вместе; она представляет собой переходный этап от классической к квантовой физике.
Домашнее задание:
1. В каком состоянии энергия электрона меньше: в основном или в возбужденном?
2. Определите наименьшую энергию, которую надо сообщить атому водорода, чтобы перевести его в ионизированное состояние.
3. Сколько квантов с различной энергией может испустить атом водорода, если он находится в третьем энергетическом состоянии?
4. Какие новые закономерности микромира открыл Н. Бор? Почему они были сформулированы в виде постулатов? Чем они противоречат классическим представлениям?
www.youtube.com/embed/WvyBXwrM5EI
Посмотреть видео