STAT 4010

Bayesian Learning

Description

This course introduces the basic Bayesian inference procedures and philosophy, emphasizing both conceptual foundations and implementation. It covers conjugate families of distributions, Bayesian credible region, Jeffery’s prior, Markov Chain Monte Carlo, Bayes factor, Bayesian information criterion, imputation, Bayesian linear-regression models, model averaging, hierarchical models and empirical Bayes models. Hands-on implementation of estimation and inference procedures in R will be demonstrated in interactive sections. 

Learning outcomes

Upon finishing the course, students are expected to 

Academic years