Roh, W., Satoh, M., Hagihara, Y., Horie, H., Ohno, Y., and Kubuta, T. (2024) An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite. Atmos. Meas. Tech., 17, 3455-3466. https://doi.org/10.5194/amt-17-3455-2024
Roh, W., Satoh, M., Hashino, T., Matsugishi, S., Nasuno, T., Kubota, T. (2023) Introduction to EarthCARE synthetic data using a global storm-resolving simulation. Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023.
Hashino,T., M. Satoh, Y. Hagihara, S. Kato, T. Kubota, T. Matsui, T. Nasuno, H. Okamoto, and M. Sekiguchi, 2016: Evaluating Cloud Radiative Effects in Arctic simulated by NICAM with A-train, JGR-Atmos.,121, https://doi.org/10.1002/2016JD024775.
Satoh,M., W. Roh, and T. Hashino, 2016: Evaluations of clouds and precipitations in NICAM using the joint simulator for satellite sensors, CGER’s Supercomputer Monograph Report Vol. 22, Center for Global Environmental Research, National Institute for Environmental Studies.[pdf available]
Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto (2013), Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO, J. Geophys. Res. Atmos., 118, 7273-7292, https://doi.org/10.1002/jgrd.50564.
Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W., Petersen, W., L'Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., and Kwiatkowski, J., 2013: GPM Satellite Simulator over Ground Validation Sites. Bull. Amer. Meteor. Soc., 94, 11, 1653-1660, https://doi.org/10.1175/BAMS-D-12-00160.1
Masunaga, H., and Coauthors, 2010: Satellite data simulator unit (SDSU) : A multi-sensor, multi-spectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 1625-1632. https://doi.org/10.1175/2010BAMS2809.1
Eisinger, M., F. Marnas, K. Wallace, T. Kubota, N. Tomiyama, Y. Ohno, T. Tanaka, E. Tomita, T. Wehr, and D. Bernaerts, 2024: The EarthCARE Mission: Science Data Processing Chain Overview, Atmos. Meas. Tech., 17, 839?862, https://doi.org/10.5194/amt-17-839-2024
Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M., Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D., 2023: The EarthCARE Mission ? Science and System Overview, Atmos. Meas. Tech., 16, 3581-3608, https://doi.org/10.5194/amt-16-3581-2023
Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., and Kubota, T., 2023: Global evaluation of Doppler velocity errors of EarthCARE Cloud Profiling Radar using global storm-resolving simulation, Atmos. Meas. Tech., 16, 3211-3219, https://doi.org/10.5194/amt-16-3211-2023
Wang, M., Nakajima, T. Y., Roh, W., Satoh, M., Suzuki, K., Kubota, T., and Yoshida, M., 2023: Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product, Atmos. Meas. Tech., 16, 603?623, https://doi.org/10.5194/amt-16-603-2023
K. Ohara, T. Kubota, M. Kachi, and M. Kazumori, 2023: Comparison of Long-term Total Precipitable Water Products by the Advanced Microwave Scanning Radiometer 2 (AMSR2), J. Meteor. Soc. Japan,, 101, 4, pp. 289-308, https://doi.org/10.2151/jmsj.2023-018
Hagihara, Y., Y. Ohno, H. Horie, W. Roh, M. Satoh, T. Kubota and R. Oki, 2021: Assessments of Doppler velocity error of EarthCARE Cloud Profiling Radar using global cloud system resolving simulation: Effects of Doppler broadening and folding, IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2021.3060828.
Taylor, J., A. Okazaki, T. Honda, S. Kotsuki, M. Yamaji, T. Kubota, R. Oki, T. Iguch, T. Miyoshi, 2021: Oversampling Reflectivity Observations from a Geostationary Precipitation Radar Satellite: Impact on Typhoon Forecasts within an OSSE Framework, J. Adv. Model. Earth Syst., https://doi.org/10.1029/2020MS002332
Roh, W., Satoh, M., Hashino, T., Okamoto, H., Seiki, T. 2020: Evaluations of the thermodynamic phases of clouds in a cloud system-resolving model using CALIPSO and a satellite simulator over the Southern Ocean., J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0273.1.
Kuba, N., Seiki, T., Suzuki, L, Roh, W., and Satoh, M. 2020:Evaluation of rain microphysics using a radar simulator and numerical models: Comparison of two-moment bulk and spectral bin cloud microphysics schemes. J. Adv. Model. Earth Syst., 12, e2019MS001891, https://doi.org/10.1029/2019MS001891
Okazaki A., Honda, T. Kotsuki S., Yamaji M., Kubota T., Oki R., Iguchi T., and Miyoshi T. 2019: Simulating precipitation radar observations from a geostationary satellite. Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-2018-278
K. Okamoto, K. Aonashi, T. Kubota, T. Tashima, 2016: Experimental assimilation of the GPM-Core DPR reflectivity profiles for Typhoon Halong, Mon. Wea. Rev., 144 (6), 2307-2326. https://doi.org/10.1175/MWR-D-15-0399.1
T. Matsui, J. Chern, W.-K. Tao, S. Lang, M. Satoh, T. Hashino, and T. Kubota, 2016: On the land-ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm-resolving models. Journal of Hydrometeorology, 17 (5), 1425-1445.https://doi.org/10.1175/JHM-D-15-0111.1
N. Kuba, K. Suzuki, T. Hashino, T. Seiki, and M. Satoh, 2015: Numerical Experiments to Analyze Cloud Microphysical Processes Depicted in Vertical Profiles of Radar Reflectivity of Warm Clouds. Journal of the Atmospheric Sciences, 72, p. 4509-4528, doi: 10.1175/JAS-D-15-0053.1
Seiki,T., C. Kodama, M. Satoh, Y.Yuichiro, H. Okamoto,2015: Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution atmospheric general circulation model. Geophysical Research Letters, 42, p. 4150-4157, doi: 10.1002/2015GL064282
A. J. Illingworth, H. W. Barker, A. Beljaars, M. Ceccaldi, H. Chepfer, N. Clerbaux, J. Cole, J. Delanoe, C. Domenech, D. P. Donovan, S. Fukuda, M. Hirakata, R. J. Hogan, A. Huenerbein, P. Kollias, T. Kubota, T. Nakajima, T. Y. Nakajima, T. Nishizawa, Y. Ohno, H. Okamoto, R. Oki, K. Sato, M. Satoh, M. W. Shephard, A. Velazquez-Blazquez, U. Wandinger, T. Wehr, and G.-J. van Zadelhoff, 2015: The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Amer. Meteor. Soc., 96, 1311-1332. https://doi.org/10.1175/BAMS-D-12-00227.1
Kotsuki, S., ,K. Terasaki,and T. Miyoshi, 2014: GPM/DPR Precipitation Compared with a 3.5-km-Resolution NICAM Simulation, SOLA, 10, 204-209. http://dx.doi.org/10.2151/sola.2014-043
Kuba, N., T. Hashino, M. Satoh, and K. Suzuki, 2014, Relationships between layer-mean radar reflectivity and columnar effective radius of warm cloud: Numerical study using a cloud microphysical bin model. J. Geophys. Res., 119, 3281-3294. doi:10.1002/2013JD020276.
Nakajima, T. Y., 2006: Practical use of the WWW-based radiative transfer simulator on the lecture of a graduate school. Tenki, 53, 727-731.(Japanese)
Nakajima, T. Y., H. Murakami, M. Hori, T. Nakajima, T. Aoki, T. Oishi, and A. Tanaka, 2003: Efficient use of an improved radiative transfer code to simulate near-global distributions of satellite-measured radiances. Applied Optics, 42, 3460-3471.
Nakajima, T. Y., T. Imai, O. Uchino, and T. Nagai, 1999: Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar. Applied Optics, 38, 5218-5228.
Nakajima, T. Y., T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, 1998: Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations. Applied Optics, 37, 3149-3163.
Nishizawa, T., H. Okamoto, T. Takemura, N. Sugimoto, I. Matsui, and A. Shimizu, 2008: Aerosol retrieval from two-wavelength backscatter and one-wavelength polarization lidar measurement taken during the MR01K02 cruise of the R/V Mirai and evaluation of a global aerosol transport model, J. Geophys. Res., 113, D21201, https://doi.org/10.1029/2007JD009640
Okamoto, H., T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar, J. Geophys. Res., 113, D24213, https://doi.org/10.1029/2008JD009812.
Okamoto, H., T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, A. Kamei, S. Emori, and T. Nakajima, 2007: Vertical cloud structure observed from shipborne radar and lidar: mid-latitude case study during the MR01/K02 cruise of the R/V Mirai, J. Geophys. Res, 112, D08216, https://doi.org/10.1029/2006JD007628.
M. Sekiguchi, H. Iwabuchi, T. M. Nagano, and T. Nakajima, 2018: Development of Gas Absorption Tables and an Atmospheric Radiative Transfer Package for Applications Using the Advanced Himawari Imager, Journal of the Meteorological Society of Japan, https://doi.org/10.2151/jmsj.2018-007
Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 51-69.
Nakajima, T., and M. Tanaka, 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35, 13-21.
Sekiguchi, M. and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 2779–2793.
Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869-4878.