1. Li., J., J., Bortnik, Q. Wang., Q. Wen, et al. Neural Network-Based Modeling of Magnetospheric Ion Distributions: A Comparative Study of MLP, CNN, LSTM, and Transformer Networks, Frontiers in Space Science, https://doi.org/10.3389/fspas.2025.1629056
2. Wang, Q., Li, J., Bortnik, J., Ma, Q., Tian, S., Baker, D. N., et al. (2025). First observation of mini harmonic structure in magnetosonic waves. Geophysical Research Letters, 52, e2025GL114908. https://doi.org/10.1029/2025GL114908 (In Press)
3. Li, J., Bortnik, J., Li, W., An, X., Lyons, L. R., Kurth, W. S., et al. (2024). Controlling factors of chorus spectral gaps. Journal of Geophysical Research: Space Physics, 129, e2023JA031893. https://doi.org/10.1029/2023JA031893
4. Li, J., Bortnik, J., Tian, S., Ma, Q., An, X., Ma, D., et al. (2024). Fine structure of magnetospheric magnetosonic waves: 1. Elementary rising-tone emissions within individual harmonic. Journal of Geophysical Research: Space Physics, 129, e2024JA032462. https://doi.org/10.1029/2024JA032462
5. Li, J., Bortnik, J., Chu, X., Ma, D., Tian, S., Wang, C.-P., et al. (2023). Modeling ring current proton fluxes using artificial neural network and Van Allen Probe measurements. Space Weather, 21, e2022SW003257. https://doi.org/10.1029/2022SW003257
6. Li, J., Bortnik, J., Li, W., An, X., Lyons, L. R., Kurth, W. S., et al. (2022). Unraveling the formation region and frequency of chorus spectral gaps. Geophysical Research Letters, 49, e2022GL100385. https://doi.org/10.1029/2022GL100385
7. Li, J., Bortnik, J., Ma, Q., Li, W., Shen, X., Nishimura, Y., et al. (2021). Multipoint observations of quasiperiodic emission intensification and effects on energetic electron precipitation. Journal of Geophysical Research: Space Physics, 126, e2020JA028484. https://doi.org/10.1029/2020JA028484
8. Li, J., Chu, X., Bortnik, J., Weygand, J., Wang, C.‐P., Liu, J., et al. (2021). Characteristics of substorm‐onset‐related and nonsubstorm earthward fast flows and associated magnetic flux transport: THEMIS observations. Journal of Geophysical Research: Space Physics, 126, e2020JA028313. https://doi.org/10.1029/2020JA028313
9. Li, J., Ma, Q., Bortnik, J., Li, W., An, X., Reeves, G. D., et al. (2019). Parallel acceleration of suprathermal electrons caused by whistler‐mode hiss waves. Geophys. Res. Lett., 46, 12675– 12684. https://doi.org/10.1029/2019GL085562.
10. Li, J., Bortnik, J., An, X., Li, W., Angelopoulos, V., et al. (2019), Origin of two-band chorus in the radiation belt of Earth, Nature Communications, 10, 4672, https://doi.org/10.1038/s41467-019-12561-3
11. Li, J., Bortnik, J., An, X., Li, W., Russell, C. T., Zhou, M., et al. (2018). Local excitation of whistler mode waves and associated Langmuir waves at dayside reconnection regions. Geophys. Res. Lett., 45, 8793– 8802. https://doi.org/10.1029/2018GL078287
12. Li, J., Bortnik, J., An, X., Li, W., Thorne, R. M., Zhou, M., … Spence, H. E. (2017). Chorus wave modulation of Langmuir waves in the radiation belts. Geophys. Res. Lett., 44, 11,713– 11,721. https://doi.org/10.1002/2017GL075877
13. Li, J., Bortnik, J., Li, W., Ma, Q., Thorne, R. M., et al. (2017), “Zipper‐like” periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations, J. Geophys. Res. Space Physics, 122, 1600–1610, https://doi.org/10.1002/2016JA023536
14. Li, J., Bortnik, J., Li, W., Thorne, R. M., Ma, Q., et al. (2017), Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales, J. Geophys. Res. Space Physics, 122, 1871– 1882, https://doi.org/10.1002/2016JA023706
15. Li, J., Ni, B., Ma, Q., Xie, L., Pu, Z., Fu, S., Thorne, R. M., Bortnik, J., Chen, L., Li, W., et al. (2016), Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance, Geophys. Res. Lett., 43, 3009–3016, https://doi.org/10.1002/2016GL067853
16. Li, J., Bortnik, J., Li, W., Thorne, R. M., Li, W., Ma, Q., et al. (2016), Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves, J. Geophys. Res. Space Physics, 121, 3212–3222, https://doi.org/10.1002/2016JA022370
17. Li, J., Bortnik, J., Xie, L., Pu, Z., Chen, L., et al. (2015), Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves, Physical of Plasmas, 22 (0529025), https://doi.org/10.1063/1.4914852
18. Li, J., Bortnik, J., Pu, Z., Chen, L., Ni, B. and Xie, L., (2014), Phase trapping and phase bunching: Nonlinear acceleration and deceleration of radiation belt electrons, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), ISBN: 978-1-4673-5225-3, https://doi.org/10.1109/URSIGASS.2014.6929873
19. Li, J., Ni, B., Xie, L., Pu, Z., Bortnik, J., Thorne, R. M., et al. (2014), Interactions between magnetosonic waves and radiation belt electrons: Comparisons of quasi-linear calculations with test particle simulations, Geophys. Res. Lett., 41, 4828–4834, https://doi.org/10.1002/2014GL060461
20. Li, J., Qin, H., Pu, Z., Xie, L., Fu, S. (2011), Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere, Physics of Plasmas, 18(0529025), https://doi.org/10.1063/1.3589275
21. Li, J., Cao, M., Han, L., Qi, Y., Zhang, S., Gao, H., Li, F., Killian, T. C. (2011), Calculation of Ion Equilibrium Temperature in Ultracold Neutral Plasmas, Chinese Phys Lett, 28, 123201, https://doi.org/10.1088/0256-307X/28/12/123201
PhD Thesis: The Impact of Magnetosonic Waves on Earth’s Radiation Belt Electrons: Observations and Simulations, Peking University, 2015 (https://sites.google.com/site/jinxingli87/publications/phdthesis)
1. Tian, S., J. Li, et al (2025), The Association of Microinjections with Thermal Plasma Oscillations Driven by Ultra-Low Frequency (ULF) Waves, submitted to GRL.
2. Tian, S., Li, J., Wang, C.-P., Ma, Q., Bortnik, J., Ferradas, C. P., et al. (2025). Kinetic Alfven waves driving auroral O+ ion outflows to form plasma cloak during the 17 March 2015 geomagnetic storm. Journal of Geophysical Research: Space Physics, 130, e2024JA033169. https://doi.org/10.1029/2024JA033169
3. Wang, Q., Yue, C., Li, J., Bortnik, J., Ma, D., & Jun, C.-W. (2024). Modeling the dynamic global distribution of the ring current oxygen ions using artificial neural network technique. Space Weather, 22, e2023SW003779. https://doi.org/10.1029/2023SW003779
4. Wang, S., J., Li (2023), Ring Current Decay Timescales Derived from Van Allen Probe Observations, arXiv, https://doi.org/10.48550/arXiv.2307.08907
5. Cao, X., Chu, X., Bortnik, J., Weygand, J. M., Li, J., Aryan, H., & Ma, D. (2023). The response of ionospheric currents to external drivers investigated using a neural network-based model. Space Weather, 21, e2023SW003506. https://doi.org/10.1029/2023SW003506
6. He, F., Yao, Z. H., Ni, B. B., Cao, X., Ye, S. Y., Guo, R. L., Li, J. X., Ren, Z. P., Yue, X. A., Zhang, Y. L., Wei, Y., Zhang, X. X., and Pu, Z. Y. (2023). Sawtooth and dune auroras simultaneously driven by waves around the plasmapause. Earth Planet. Phys., 7(2), 237–246. doi: 10.26464/epp2023023
7. Chu, X., R. L. McPherron, J. Bortnik, V. Angelopoulos, T. Hsu, J. M. Weygand, J. Li, X. Cao and H. Aryan (2022), Persistent pressure gradient as a driver of the substorm current wedge: A statistical study, Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10512305.1
8. Aryan, H., Bortnik, J., Li, J., Weygand, J. M., Chu, X., and Angelopoulos, V. (2022): Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations, Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022.
9. Yao, S. T., Shi, Q. Q., Zong, Q. G., Degeling, A. W., Guo., R. L., Li, L., Li, J. X., et al. (2021), Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind, The Astrophysical Journal, 923, 216, https://doi.org/10.3847/1538-4357/ac2e97
10. Kim, H.‐J., Lee, D.‐Y., Wolf, R., Bortnik, J., Kim, K.‐C., Lyons, L., et al. (2021). Rapid injections of MeV electrons and extremely fast step‐like outer radiation belt enhancements. Geophysical Research Letters, 48, e2021GL093151. https://doi.org/10.1029/2021GL093151
11. Huang, S. Y., Deng, D., Yuan, Z. G., Jiang, K., Li, J. X., Deng, X. H., et al. (2020). First Observations of Magnetosonic Waves with Nonlinear Harmonics. Journal of Geophysical Research: Space Physics, 125, e2019JA027724. https://doi.org/10.1029/2019JA027724
12. Zhao, D., S. Fu, G. K. Parks, L. Chen, X. Liu, Y. Tong, J. Li, Z. Pu, A. Zong, W. Sun, S. Li, and J. An (2020),Modulation of Whistler Mode Waves by Ion Scale Waves Observed in the Distant Magnetotail, Journal of Geophysical Research: Space Physics, 125, e2019JA027278, https://doi.org/10.1029/2019JA027278
13. An, X., Li, J. Bortnik, J., Decyk, V., Kletzing, C., and Hospodarsky, G., (2019). Unified view of nonlinear wave structures associated with whistler-mode chorus, Phys. Rev. Lett. 122, 045101, https://doi.org/10.1103/PhysRevLett.122.045101
14. Yao, S. T., Shi, Q. Q., Yao, Z. H., Li, J. X., Yue, C., Tao, X., et al. (2019). Waves in kinetic‐scale magnetic dips: MMS observations in the magnetosheath. Geophysical Research Letters, 46, 523– 533. https://doi.org/10.1029/2018GL080696
15. Zhou, M., Berchem, J., Walker, R. J., El-Alaoui,M., Goldstein,M. L., Lapenta, G., J. Li, et al. (2018). Magnetospheric Multiscale observations of an ion diffusion region with large guide field at the magnetopause: Current system, electron heating, and plasma waves. Journal of Geophysical Research: Space Physics, 123. Doi: https://doi.org/10.1002/2017JA024517
16. Lei, M., Xie, L., Li, J., Pu, Z., Fu, S., Ni, B., Hua, M., Chen, L. & Li, W. (2017). The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters. Journal of Geophysical Research: Space Physics, 122, https://doi.org/10.1002/2016JA023801
17. Yue, C., Chen, L., Bortnik, J., Ma, Q., Thorne, R. M., Angelopoulos, V., Li, J., An, X., Zhou, C., Kletzing, C., Reeves, G. D., Spence, H. E., (2017), The characteristic response of whistler mode waves to interplanetary shocks. Journal of Geophysical Research: Space Physics, 122, https://doi.org/10.1002/2017JA024574
18. D.-S Han., J.‐X. Li , Y. Nishimura, L. R. Lyons , J. Bortnik, M. Zhou , J.‐J. Liu, Z.‐J. Hu, H.‐Q. Hu, H.‐G. Yang , S. A. Fuselier, O. Le Contel, R. E. Ergun, D. Malaspina, P.‐A. Lindqvist, and C. J. Pollock (2017), Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale Mission and ground all-sky camera, Geophysical Research Letters, 44, https://doi.org/10.1002/2017GL074447
19. J. Liu, V. Angelopoulos, X.-J. Zhang, D. L. Turner, C. Gabrielse, A. Runov, J. Li, H. O. Funsten, and H. E. Spence (2016), Dipolarizing flux bundles in the cisgeosynchronous magnetosphere: Relationship between electric fields and energetic particle injections, J. Geophys. Res. Space Physics, 121, 1362–1376, https://doi.org/10.1002/2017GL074447
20. S. Fu, B. Ni, J. Li, C. Zhou, X. Gu, S. Huang, H. Zhang, Y. Ge, and X. Cao (2016), Interactions between magnetosonic waves and ring current protons: Gyroaveraged test particle simulations, J. Geophys. Res. Space Physics, 121, 8537–8553, doi:10.1002/2016JA023117.
21. X.-J. Zhang, W. Li, R. M. Thorne, V. Angelopoulos, Q. Ma, J. Li, J. Bortnik, Y. Nishimura, L. Chen, D. N. Baker, G. D. Reeves, H. E. Spence, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake, J. F. Fennell (2016), Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event, J. Geophys. Res. Space Physics, 121, 8300–8316, doi:10.1002/2016JA022517.
22. W. Li, Q. Ma, R. M. Thorne, J. Bortnik, X.-J. Zhang, J. Li, D. N. Baker, G. D. Reeves, H. E. Spence, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake, J. F. Fennell, S. G. Kanekal, V. Angelopoulos, J. C. Green, J. Goldstein (2016), Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations, J. Geophys. Res. Space Physics, 121, 5520–5536, doi:10.1002/2016JA022400.
23. Ying Xiong, Lun Xie, Jinxing Li, Hui Zhang, Suiyan Fu, Zuyin Pu. Variation characteristics of relativistic electron fluxes in the outer radiation belt with different energies during geomagnetic storms (in Chinese). Chin Sci Bull, 2015, 60: 1–8, doi: 10.1360/N972014-00761.
24. Xiong, Y., L. Xie, Z. Pu, S. Fu, L. Chen, B. Ni, W. Li, J. Li, R. Guo, and G. K. Parks (2015), Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms, J. Geophys. Res. Space Physics, 120, 9513–9523, doi:10.1002/2015JA021440.
25. L. Chen, A. Maldonado, J. Bortnik, R. M. Thorne, J. Li, L. Dai, X. Zhan (2015), Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons, J. Geophys. Res. Space Physics, 120, 6514–6527, doi: 10.1002/2015JA021174.
26. J. Bortnik, R. M. Thorne, B. Ni, and J. Li (2015), Analytical approximation of transit time scattering due to magnetosonic waves, Geophys. Res. Lett., 42, 1318–1325, doi:10.1002/2014GL062710.
27. Shanshan Chang, Binbin Ni, Zhengyu Zhao, Feng Wang, Jinxing Li, Jinjin Zhao, Xudong Gu, Chen Zhou (2014), Test particle simulation of resonant interaction between energetic electrons in the magnetosphere and ELF/VLF waves generated by ionospheric modification (in Chinese), Acta Phys. Sin. 63, No. 6, 069401. doi: 10.7498/aps.63.069401.
28. Ruilong Guo, Zuyin Pu, Chijie Xiao, Xiaogang Wang, Suiyan Fu, Lun Xie, Qiugang Zong, Jiansen He, Zhonghua Yao, Jun Zhong, and Jinxing Li, (2013), Separator reconnection with antiparallel/component features observed in magnetotailplasmas, J. Geophys. Res. Space Physics, 118, 6116–6126, doi:10.1002/jgra.50569.
29. J. Zhong, L. Xie, H. Zhang, J. X. Li, Z. Y. Pu, M. Nowada, X. D. Wangd, X. Y. Wange, G. K. Parks, Q. G. Zong, S. Y. Fu, R. L. Guo, Z. H. Yao, X. G. Zhang, H. Reme, S. J. Wang (2013), Chang'E-1 observations of pickup ions near the Moon under different interplanetary magnetic field conditions, Planet Space Sci, 79-80, 56-63, doi: 10.1016/j.pss.2013.02.001.
30. Shanshan Chang, Binbin Ni, Jacob Bortnik, Chen Zhou, Zhenyu Zhao, Jinxing Li, and Xudong Gu (2013), Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification, Ann. Geophys., 32, 507-518, 2014, doi:10.5194/angeo-32-507-2014.
31. Z. H. Yao, Z. Y. Pu, S. Y. Fu, V. Angelopoulos, M. Kubyshkina, X. Xing, L. Lyons, Y. Nishimura, L. Xie, X. G. Wang, C. J. Xiao, X. Cao, J. Liu, H. Zhang, M. Nowada, Q. G. Zong, R. L. Guo, J. Zhong, J. X. Li (2012), Mechanism of substorm current wedge formation: THEMIS observations, Geophys Res Lett, 39 (L13102), doi: 10.1029/2012GL052055.