The Graduate Student Colloquium is geared towards introducing graduate students to different areas of mathematics. Each week a different member of the Graduate Center Mathematics Department faculty will discuss a topic that is accessible to all graduate students. All graduate students without an advisor are required to attend, but even those with an advisor are welcome! Faculty members are strongly discouraged from attending. All meetings of the Graduate Student Colloquium will be held on Mondays from 4:15-5:00 PM in the Room 5417, unless otherwise stated.Organizers: Samuel Magill: smagill@gradcenter.cuny.edu Ryan Utke: rutke@gradcenter.cuny.edu Professor Alexander Gamburd: agamburd@gmail.com Spring 2019 ScheduleFebruary 11th, 2019Scott WilsonTitle: The ubiquitous de Rham complexAbstract: I'll give a tour of some history and personal close encounters with the de Rham complex, including some present-day research. February 18th, 2019College closedFebruary 25th, 2019 (4:45pm)Roman KossakTitle: Resplendent StructuresAbstract: In model theory a structure is a set --- the domain of the structure --- with a set of functions and relations on it.
I will talk about resplendent structures. Examples include: arbitrary sets with no functions and relations, the set of rational numbers with the ordering relation, the countable random graph, and the field of complex numbers. The ring of integers, and the field of real numbers are not resplendent. I will give a general definition of resplendency and I will discuss some applications. If you want to read something before the talk, here is a short introductory article: https://www.ams.org/notices/201106/rtx110600812p.pdf March 4th, 2019Cancelled (College closed due to weather)March 11th, 2019Vladimir ShpilrainTitle: Applications of number theory, algebra, and probability theory to information security
Abstract. I'll give a survey of how the above named areas of mathematics can be applied to information security. March 18th, 2019CancelledMarch 25th, 2019Ilya KofmanTitle: Growth and GeometryAbstract: We discuss knots, graphs and related topological objects whose
complexity has an exponential growth rate given by hyperbolic volume. April 1stTobias JohnsonTitle: The frog model and other processes in discrete probabilityAbstract: Imagine that every vertex of a graph contains a sleeping frog. At time 0, the frog at one vertex wakes up and begins a random walk. When it moves to a new vertex, the sleeping frog there wakes up and begins its own random walk, which in turn wakes up any sleeping frogs it lands on, and so on. This process is called the frog model, and despite the cutesy name, it's a serious object of study for which many basic questions remain open. I'll talk about the frog model on trees, where the model displays some interesting phase transitions. In particular, I'll (mostly) answer a question posed by Serguei Popov in 2003 by showing that on a binary tree, all frogs wake up with probability one, while on a 5-ary or higher tree, some frogs remain asleep forever with probability one. I'll also introduce a few seminal results in discrete probability and statistical physics to put my work in context. This is joint work with Christopher Hoffman and Matthew Junge. April 8thMartin BenderskyTitle: An Intruduction to Homotopy TheoryAbstract: Some remarks about the homotopy groups of the spheres and applications to algebraic and geometric problems. April 15thPat HooperTitle: Infinite Rational IETs and Periodic PolyhedraAbstract: I will briefly discuss two ongoing research projects involving two undergraduate students: Pavel Javornik and Anna Tao.
Pavel Javornik and I are thinking about the geodesic flow on an periodic polyhedral surface built out of infinitely many squares. We are interested in a number of geometric and dynamical aspects of geodesics on the surface. I will concentrate on discussing properties of closed geodesics. By taking rescaled limits of sequences of closed geodesics, we find some interesting fractal snowflakes (among other phenomena).
April 22ndCancelled (Spring Break)April 29thJesenko VukadinovicFall 2018 ScheduleSeptember 17th, 2018 Louis-Pierre Arguin Title: Large values of the Riemann zeta function on short intervals Abstract: The moments of the zeta function play a
fundamental role in analytic number theory. In this talk, we will review
the basics of the zeta function. We will look at the probabilistic
interpretation of the moments. We will see see how modern
techniques inspired by extreme value theory can say something about the
moments in short intervals. September 24th, 2018 Mahmoud Zeinalian Title: Poisson geometry and closed string interactions Abstract: A function on a symplectic manifold generates a flow. The flows
associated to two functions rarely commute. The extent to which such
flows don't commute is measured by a Lie bracket on the space of
functions. The relationship this Lie bracket has with
the addition and multiplication of functions is encapsulated in the
definition of a Poisson algebra. Some of the most interesting objects in mathematics have natural symplectic structures. The space of all Hyperbolic structures on a closed and oriented surface, for instance, has a natural symplectic structure. A closed curve on the surface can be thought of as a function that assigns to a hyperbolic structure the length of the unique geodesic in its free homotopy class. The flow associated to a curve that has self intersections is complicated. There are, however, illuminating results about their associated Poisson brackets. This geometric problem has produced a wealth of new mathematics, most of which was in fact created at GC CUNY. The original Chas-Sullivan work was informed by the geometric results of Scott Wolpert and Bill Goldman. Their work, in turn, has informed a lot of the subsequent progress. In this talk, I will describe the relevant Poisson geometry. Our Wednesday seminars, to which you are cordially invited to attend, revolve around related phenomena. October 1st Khalid Bou-Rabee Title: The Classification of infinite groups Abstract: This sounds like a very daunting problem. And it
is. Why tackle such a thing? Is there any hope? Will these
contemplations make pizza taste better? I hope to answer some of these
questions with intoxicating buzz words: zeta functions,
subgroup growth, commensurability growth, residual finiteness growth,
arithmetic lattices, linear algebraic groups, etc.October 8th College closedOctober 15th Benjamin Steinberg Title: Character Theory and Rationality of Zeta Functions of Languages & Symbolic Dynamical Systems
Abstract: We talk about zeta functions of symbolic dynamical systems and languages. We sketch a proof using character theory of a theorem of Berstel and Reutenauer on the rationality of zeta functions of cyclic regular languages. As a consequence we obtain Manning's theorem on the rationality of zeta functions of sofic shifts. Basic knowledge of calculus and linear algebra is assumed and at the very end a small bit of group theory. October 22nd Math Department ColloquiumOctober 29th Jozef Dodziuk Title: Ubiquitous Laplacian Abstract: I will describe how certain differential and difference operators that are commonly called Laplacian appear in different contexts: graphs, random walks, Riemannian geometry, heat conduction, propagation of waves, ...November 5th Jason Behrstock
Title: Introduction to Geometric Group Theory Abstract: A central aspect of geometric group theory is that finitely generated
groups can be treated as geometric objects and that this view point allows
one to prove results that are otherwise difficult or inaccessible through
purely algebraic means. In this talk, I'll give a quick
introduction to the basic objects of study and a taste of the types of
theorems one can prove from this approach. November 12th Hans Schoutens Title: Ultraproducts for the Lay Mathematician |

Current Seminars >