Nanotechnology (or Nanotech) is the engineering of functional systems at the molecular scale.
What does that mean?
Nanotechnology originates from the Greek word meaning “dwarf”. A nanometre is one billionth (10 -9) of a metre, which is tiny, only the length of ten hydrogen atoms, or about one hundred thousandth of the width of a hair! Although scientists have manipulated matter at the nanoscale for centuries, calling it physics or chemistry, it was not until a new generation of electron microscopes were invented in the nineteen eighties by IBM, that the world of atoms and molecules could be visualized and managed.
Nanotechnology can be defined as ‘engineering at a very small scale’, and can be applied to many areas of research and development – from medicine to manufacturing to computing, and even to textiles and cosmetics. It can be difficult to imagine exactly how this greater understanding of the world of atoms and molecules has and will affect the everyday objects we see around us, it will be vast and transform almost everything we do.
Nanotechnology is the continuation of the miniaturization revolution where millionth of a metre (10 -6m) tolerances (microengineering) are now commonplace.
Nanotechnology is an exciting area of scientific development which promises ‘more for less’. It offers ways to create smaller, cheaper, lighter and faster devices that can do more and cleverer things, use less raw materials and consume less energy. There are many examples of the application of nanotechnology from the simple to the complex. For example, there are nano coatings which can repel dirt and reduce the need for harmful cleaning agents, or prevent the spread of hospital-borne infections. New-generation hip implants can be made more ‘body friendly’ because they have a nanoscale topography that encourages acceptance by the cells in their vicinity. Moving on to more complex products, a good example of the application of nanotechnology is a mobile phone, which has changed dramatically in a few years – becoming smaller and smaller, while paradoxically, growing cleverer and faster – and cheaper!
molecular nanosystems--heterogeneous networks in which molecules and supramolecular structures serve as distinct devices. The proteins inside cells work together this way, but whereas biological systems are water-based and markedly temperature-sensitive, these molecular nanosystems will be able to operate in a far wider range of environments and should be much faster. Computers and robots could be reduced to extraordinarily small sizes. Medical applications might be as ambitious as new types of genetic therapies and antiaging treatments. New interfaces linking people directly to electronics could change telecommunications.
Over time, therefore, nanotechnology should benefit every industrial sector and health care field. It should also help the environment through more efficient use of resources and better methods of pollution control. Nanotech does, however, pose new challenges to risk governance as well. Internationally, more needs to be done to collect the scientific information needed to resolve the ambiguities and to install the proper regulatory oversight. Helping the public to perceive nanotech soberly in a big picture that retains human values and quality of life will also be essential for this powerful new discipline to live up to its astonishing potential.