(ordered by arXiv initial submission date with the most recent at the top)
On Grün's lemma for perfect skew braces
To appear in J. Math. Soc. Japan
Normalizer quotients of symmetric groups and inner holomorphs
(w/ Alexei Entin) J. Pure Appl. Algebra 229 (2025), no. 1, Paper No. 107839, 11 pp.
(doi:10.1016/j.jpaa.2024.107839) (MathSciNet:4827851) (zbMath:07975236) (arXiv:2408.07133)
Classification of the types for which every Hopf--Galois correspondence is bijective
(w/ Lorenzo Stefanello) J. Algebra 664 (2025), part A, 514–526.
(doi:10.1016/j.jalgebra.2024.10.010) (MathSciNet:4813557) (zbMath:07976197) (arXiv:2406.15800)
Representation theory of skew braces
(w/ Yuta Kozakai) Int. J. Group Theory 14 (2025), no. 3, 149–164.
(doi:10.22108/ijgt.2024.142261.1913) (MathSciNet:4822895) (zbMath:07950846) (arXiv:2405.08662)
Finite almost simple groups whose holomorph contains a solvable regular subgroup
To appear in Adv. Group Theory Appl.
A generalization of Ito's theorem to skew braces
J. Algebra 642 (2024), 367–399.
(doi:10.1016/j.jalgebra.2023.12.012) (MathSciNet:4685185) (zbMath:07791770) (arXiv:2305.10081)
Finite $p$-groups of class two with a small multiple holomorph
(w/ Andrea Caranti) J. Group Theory 27 (2024), no. 2, 345–381.
(doi:10.1515/jgth-2023-0054) (MathSciNet:4710052) (zbMath:07812020) (arXiv:2303.10638)
Non-abelian simple groups which occur as the type of a Hopf-Galois structure on a solvable extension
Bull. Lond. Math. Soc. 55 (2023), no.5, 2324–2340.
(doi:10.1112/blms.12860) (MathSciNet:4672898) (zbMath:07774940) (arXiv:2210.14689)
Finite $p$-groups of class two with a large multiple holomorph
(w/ Andrea Caranti) J. Algebra 617 (2023), 476–499.
(doi:10.1016/j.jalgebra.2022.11.013) (MathSciNet:4520719) (zbMath:7635023) (arXiv:2205.15205)
Hopf-Galois structures on cyclic extensions and skew braces with cyclic multiplicative group
Proc. Amer. Math. Soc. Ser. B 9 (2022), 377–392.
(doi:10.1090/bproc/138) (MathSciNet:4500760) (zbMath:07615713) (arXiv:2112.08894)
The multiple holomorph of centerless groups
J. Pure Appl. Algebra 229 (2025), no. 1, Paper No. 107843, 15 pp.
(doi:10.1016/j.jpaa.2024.107843) (MathSciNet:4835975) (zbMath:07975240) (arXiv:2107.13690)
Finite skew braces with isomorphic non-abelian characteristically simple additive and circle groups
J. Group Theory 25 (2022), no. 2, 389–410.
(doi:10.1515/jgth-2021-0044) (MathSciNet:4388366) (zbMath:07483875) (arXiv:2009.00266)
The multiple holomorph of split metacyclic $p$-groups
Comm. Algebra 50 (2022), no. 10, 4269–4287.
(doi:10.1080/00927872.2022.2059079) (MathSciNet:4447460) (zbMath:07557689) (arXiv:2004.07084)
Hopf-Galois structures on finite extensions with quasisimple Galois group
Bull. Lond. Math. Soc. 53 (2021), no. 1, 148–160.
(doi:10.1112/blms.12407) (MathSciNet:4224519) (zbMath:07367025) (arXiv:2001.05718)
The multiple holomorph of a semidirect product of groups having coprime exponents
Arch. Math. (Basel) 115 (2020), no. 1, 13–21.
(doi:10.1007/s00013-020-01439-2) (MathSciNet:4105008) (zbMath:7207322) (arXiv:1912.06781)
Hopf-Galois structures on finite extensions with almost simple Galois group
J. Number Theory 214 (2020), 286–311.
(doi:10.1016/j.jnt.2020.04.003) (MathSciNet:4105712) (zbMath:07206995) (arXiv:1911.10336)
On the multiple holomorph of groups of squarefree or odd prime power order
J. Algebra 544 (2020), 1–28.
(doi:10.1016/j.jalgebra.2019.10.019) (MathSciNet:4023139) (zbMath:1445.20003) (arXiv:1906.08513)
On the multiple holomorph of a finite almost simple group
New York J. Math. 25 (2019), 949–963.
(link to paper) (MathSciNet:4012575) (zbMath:07118596) (arXiv:1904.09754)
On the solvability of regular subgroups in the holomorph of a finite solvable group
(w/ Chao Qin) Internat. J. Algebra Comput. 30 (2020), no. 2, 253–265.
(doi:10.1142/S0218196719500735) (MathSciNet:4077413) (zbMath:07181934) (arXiv:1901.10636)
Hopf-Galois structures on a Galois $S_n$-extension
J. Algebra 531 (2019), 349–361.
(doi:10.1016/j.jalgebra.2019.05.006) (MathSciNet:3953015) (zbMath:07065958) (arXiv:1812.06419)
Hopf-Galois structures of isomorphic-type on a non-abelian characteristically simple extension
Proc. Amer. Math. Soc. 147 (2019), no. 12, 5093–5103.
(doi:10.1090/proc/14627) (MathSciNet:4021072) (zbMath:1441.16039) (arXiv:1811.11399)
Non-existence of Hopf-Galois structures and bijective crossed homomorphisms
J. Pure Appl. Algebra 223 (2019), no. 7, 2804–2821.
(doi:10.1016/j.jpaa.2018.09.016) (MathSciNet:3912948) (zbMath:07032786) (arXiv:1805.10830)
The number of $D_4$-fields with monogenic cubic resolvent ordered by conductor
(w/ Stanley Xiao) Trans. Amer. Math. Soc. 374 (2021), no. 3, 1987–2033.
(doi:10.1090/tran/8260) (MathSciNet:4216730) (zbMath:07313203) (arXiv:1712.08552)
On the self-duality of rings of integers in tame and abelian extensions
Acta Arith. 191 (2019), no. 2, 151–171.
(doi:10.4064/aa180628-6-12) (MathSciNet:4008638) (zbMath:07118314) (arXiv:1703.03217)
Binary quartic forms with bounded invariants and small Galois groups
(w/ Stanley Xiao) Pacific J. Math. 302 (2019), no. 1, 249–291.
(doi:10.2140/pjm.2019.302.249) (MathSciNet:4028773) (zbMath:07178921) (arXiv:1702.07407)
Galois module structure of the square root of the inverse different over maximal orders
Bull. Lond. Math. Soc. 49 (2017), no. 1, 71–88.
(doi:10.1112/blms.12015) (MathSciNet:3653102) (zbMath:1433.11129) (arXiv:1607.07214)
Realizable classes and embedding problems
J. Théor. Nombres Bordeaux 29 (2017), no. 2, 647–680.
(doi:10.5802/jtnb.995) (MathSciNet:3682483) (zbMath:1420.11135) (arXiv:1602.02342)
On the realizable classes of the square root of the inverse different in the unitary class group
Int. J. Number Theory 13 (2017), no. 4, 913–932.
(doi:10.1142/S1793042117500476) (MathSciNet:3627689) (zbMath:1377.11116) (arXiv:1509.06129)
On the Galois module structure of the square root of the inverse different in abelian extensions
J. Number Theory 160 (2016), 759–804.
(doi:10.1016/j.jnt.2015.09.010) (MathSciNet:3425233) (zbMath:1396.11127) (arXiv:1407.4175)
Analogs of the lower and upper central series in skew braces: a survey
Commun. Math. 33 (2025), no. 3, Paper No. 11, 30 pp.
(doi:10.46298/cm.15314) (MathSciNet:4957803) (zbMath:)(arXiv:2503.01366)
Factorizations of groups and skew braces
To appear in the Ischia Group Theory 2024 proceedings (Springer Proceedings in Mathematics & Statistics)
Note: This paper is not on the arXiv.
ホップガロア対応の全単射性について (in Japanese)
Proceedings of the 18th Research Meeting of Women in Number Theory in Japan (2025), 75–84.
On skew braces: similarities with rings and groups and their representations (in Japanese)
Proceedings of the 56th Symposium on Ring Theory and Representation Theory (2025), 63–69.
Skew brace の加法群と乗法群の関係性について (in Japanese)
RIMS Kôkyûroku 2287 (2024), 1–12.
Hopf--Galois structures of cyclic type on parallel extensions of prime power degree
(w/ Andrew Darlington) submitted
On cardinalities whose arithmetical properties determine the structure of solutions of the Yang--Baxter equation
(w/ Maria Ferrara, Marco Trombetti) submitted
On $n$-isoclinism of skew braces
(w/ Risa Arai)
(downloadable pdf available on my researchmap page)
Galois module structures and Hopf-Galois structures on extensions of number fields
Postdoctoral report, Tsinghua University, 2018.
On the Galois module structure of the square root of the inverse different in abelian extensions
Doctoral thesis, University of California, Santa Barbara, 2016
Learning Japanese as a foreign language in the context of an American university: a qualitative and process-oriented study on de/motivation at the learning situation level
Foreign Lang. Ann. 45 (2012), 130–163. (doi:10.1111/j.1944-9720.2012.01167.x)