1. Lohe, M. A. (2017). The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay. Journal of Physics A: Mathematical and Theoretical, 50(50), 505101. doi.org/10.1088/1751-8121/aa98ef

2. Lohe, M. A. (2018). Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization. Journal of Physics A: Mathematical and Theoretical, 51(22), 225101. doi.org/10.1088/1751-8121/aac030

3. Jaćimović, V. (2018). Computing the Douady–Earle extension using Kuramoto oscillators. Analysis and Mathematical Physics, 1-7. doi.org/10.1007/s13324-018-0214-z

4. Jaćimović, V. (2018). Mean fields in networks of interacting particles. www.mis.mpg.de/fileadmin/pdf/abstract_gso18_3272.pdf

5. Jaćimović, V., & Crnkić, A. (2018). Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Chaos, (28): 083105. doi.org/10.1063/1.5029485

6. Ciobotaru, C., Hoessly, L., Mazza, C., & Richard, X. (2018). Mean field repulsive Kuramoto models: Phase locking and spatial signs. arXiv preprint arXiv:1803.02647. arxiv.org/abs/1803.02647

7. Bick, C. (2018). Heteroclinic Dynamics of Localized Frequency Synchrony: Heteroclinic Cycles for Small Populations. arxiv.org/abs/1810.06715

8. Dietert, H. & Fernandez, B. (2018). The mathematics of asymptotic stability in the Kuramoto model. Proceedings of the Royal Society A, (474): 20180467. doi.org/10.1098/rspa.2018.0467

9. Lipton, M. (2018).Conformal Group Actions on Generalized Kuramoto Oscillators. arxiv.org/abs/1812.06539

10. Goldobin, D. (2018). Relationships between the Distribution of Watanabe-Strogatz Variables and Circular Cumulants for Ensembles of Phase Elements. arxiv.org/abs/1810.11213

11. Bick, C., Goodfellow, M., Laing, C. & Martens, E. (2019). Understanding the dynamics of biological and neural oscillator networks through mean-field reductions: a review. arxiv.org/abs/1902.05307