1. Dhar, A., Mishra, T., Pai, R. V., & Das, B. P. (2011). Quantum phases of ultracold bosonic atoms in a one-dimensional optical superlattice. Physical Review A, 83(5), 053621. doi.org/10.1103/PhysRevA.83.053621
2. Dhar, A., Singh, M., Pai, R. V., & Das, B. P. (2011). Mean-field analysis of quantum phase transitions in a periodic optical superlattice. Physical Review A, 84(3), 033631. doi.org/10.1103/PhysRevA.84.033631
3. Lian, H., & Tian, D. (2011). Quantum phase transition in XY spin chain with three-site interaction studied in terms of Loschmidt echo and Berry phase. Physics Letters A, 375(41), 3604-3609. doi.org/10.1016/j.physleta.2011.08.025
4. Lian, H., & Tian, D. (2011). Critical behavior of XY spin chain with Dzyaloshinsky–Moriya interaction studied in terms of Loschmidt echo. Physica B: Condensed Matter, 406(9), 1814-1817. doi.org/10.1016/j.physb.2011.02.034
5. Huang, B. B., & Wan, S. (2011). Mott insulator-superfluid phase transition in p-band triangle optical lattices with on-site rotation. The European Physical Journal B, 83(4), 475-479. doi.org/10.1140/epjb/e2011-20264-1
6. Huang, B. B., & Wan, S. (2011). Bose-Hubbard model in checkerboard superlattices with a magnetic field. Communications in Theoretical Physics, 55(5), 807. doi.org/10.1088/0253-6102/55/5/14
7. McIntosh, T., Pisarski, P., Gooding, R. J., & Zaremba, E. (2012). Multisite mean-field theory for cold bosonic atoms in optical lattices. Physical Review A, 86(1), 013623. doi.org/10.1103/PhysRevA.86.013623
8. Wagner, A., Nunnenkamp, A., & Bruder, C. (2012). Mean-field analysis of spinor bosons in optical superlattices. Physical Review A, 86(2), 023624. doi.org/10.1103/PhysRevA.86.023624
9. Iskin, M. (2012). Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model. The European Physical Journal B, 85(2), 76. doi.org/10.1140/epjb/e2012-20852-5
10. Lian, H. (2012). Critical behavior of the XY spin chain with three-site interaction studied in terms of the Loschmidt echo. Chinese Physics C, 36(6), 479. doi.org/10.1088/1674-1137/36/6/001
11. Wang, T., Zhang, X. F., Eggert, S., & Pelster, A. (2013). Generalized effective-potential Landau theory for bosonic quadratic superlattices. Physical Review A, 87(6), 063615. doi.org/10.1103/PhysRevA.87.063615
12. Wagner, A. (2012). Spinor condensates in optical superlattices (Doctoral dissertation, University of Basel, Switzerland). edoc.unibas.ch/23871/1/thesis.pdf
13. Dhar, A., Mishra, T., Pai, R. V., Mukerjee, S., & Das, B. P. (2013). Hard-core bosons in a zig-zag optical superlattice. Physical Review A, 88(5), 053625. doi.org/10.1103/PhysRevA.88.053625
14. Qin S., Zheng G., Ma X., Li H., Tong J., Yang B. (2013). Ultracold spin-1 atoms in three-well optical superlattice under a weak magnetic field. Acta Physica Sinica, 62(11), 110304. wulixb.iphy.ac.cn/EN/10.7498/aps.62.110304
15. Jürgensen, O., & Lühmann, D. S. (2014). Dimerized Mott insulators in hexagonal optical lattices. New Journal of Physics, 16(9), 093023. doi.org/10.1088/1367-2630/16/9/093023
16. Lühmann, D. S., Jürgensen, O., Weinberg, M., Simonet, J., Soltan-Panahi, P., & Sengstock, K. (2014). Quantum phases in tunable state-dependent hexagonal optical lattices. Physical Review A, 90(1), 013614. doi.org/10.1103/PhysRevA.90.013614
17. Meng, X., Feng, H., & Zheng, Y. (2014). Analysis of dynamical properties for the two-site Bose–Hubbard model with an algebraic method. Chinese Physics B, 23(4), 040305. doi.org/10.1088/1674-1056/23/4/040305
18. Zhang, X. F., Wang, T., Eggert, S., & Pelster, A. (2015). Tunable anisotropic superfluidity in an optical kagome superlattice. Physical Review B, 92(1), 014512. doi.org/10.1103/PhysRevB.92.014512
19. Deng, H., Dai, H., Huang, J., Qin, X., Xu, J., Zhong, H., ... & Lee, C. (2015). Cluster Gutzwiller study of the Bose-Hubbard ladder: Ground-state phase diagram and many-body Landau-Zener dynamics. Physical Review A, 92(2), 023618. doi.org/10.1103/PhysRevA.92.023618
20. Huang, Y., Wang, X., Sun, Z., & Wang, X. (2015). Quantum tunneling and entanglement of dipolar spin-1 bosons in double well potentials. The European Physical Journal D, 69(7), 181. doi.org/10.1140/epjd/e2015-50814-4
21. Di Liberto, M. F. (2015). Quantum phase transitions in low-dimensional optical lattices. https://dspace.library.uu.nl/bitstream/handle/1874/.../Thesis_MarcoDiLiberto_final.pdf
22. Nabi, S. N., & Basu, S. (2016). Spin-1 bosons in an external magnetic field and a three body interaction potential. arXiv preprint arXiv:1606.02897. arxiv.org/abs/1606.02897
23. Lin, Z., & Liu, W. (2018). Analytic calculation of high order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices. Frontiers of Physics (13): 136402. doi.org/10.1007/s11467-018-0811-1
24. Wu, Y., Zhou, W., & Kou, S. (2017). Bogoliubov excitations in the Bose-Hubbard extension of a Weyl semimetal. Physical Review A (95), 023620. doi.org/10.1103/PhysRevA.95.023620
25. Zhou, W., Wu, Y., & Kou, S. (2018). Bogoliubov excitations in a Bose–Hubbard model on a hyperhoneycomb lattice. Chinese Physics B (27), 050302. doi.org/10.1088/1674-1056/27/5/050302
26. Li, T., Guo H., Chen S., & Shen S. (2015). Complete phase diagram and topological properties of interacting bosons in one-dimensional superlattices. Physical Review B (91), 134101. doi.org/10.1103/PhysRevB.91.134101
27. Paes, R. & do Nascimento, V. (2019). Estudo teórico de transição quântica de fases em gases bosônicos aprisionados por redes ópticas periódica e quase periódica. Revista Brasileira de Ensino de Física (41), 1-7. dx.doi.org/10.1590/1806-9126-rbef-2018-0031