1. Johnson, P. R., Tiesinga, E., Porto, J. V., & Williams, C. J. (2009). Effective three-body interactions of neutral bosons in optical lattices. New Journal of Physics, 11(9), 093022. https://doi.org/10.1088/1367-2630/11/9/093022
2. Zhou, K., Liang, Z., & Zhang, Z. (2010). Quantum phases of a dipolar Bose-Einstein condensate in an optical lattice with three-body interaction. Physical Review A, 82(1), 013634. https://doi.org/10.1103/PhysRevA.82.013634
3. Huang, B., & Wan, S. (2010). Bose–Hubbard phase transition with two-and three-body interaction in a magnetic field. Physics Letters A, 374(42), 4364-4368. https://doi.org/10.1016/j.physleta.2010.08.057
4. Silva-Valencia, J., & Souza, A. M. C. (2011). First Mott lobe of bosons with local two-and three-body interactions. Physical Review A, 84(6), 065601. https://doi.org/10.1103/PhysRevA.84.065601
5. Zhang, Z., Ma, Q., & Zhang, J. (2011). Critical temperature and condensed fraction of Bose-Einstein condensation in an external potential. Chinese Physics C, 35(8), 722. https://doi.org/10.1088/1674-1137/35/8/005
6. Johnson, P. R., Blume, D., Yin, X. Y., Flynn, W. F., & Tiesinga, E. (2012). Effective renormalized multi-body interactions of harmonically confined ultracold neutral bosons. New Journal of Physics, 14(5), 053037. https://doi.org/10.1088/1367-2630/14/5/053037
7. Singh, M., Dhar, A., Mishra, T., Pai, R. V., & Das, B. P. (2012). Three-body on-site interactions in ultracold bosonic atoms in optical lattices and superlattices. Physical Review A, 85(5), 051604(R). https://doi.org/10.1103/PhysRevA.85.051604
8. Sowiński, T. (2012). Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions. Physical Review A, 85(6), 065601. https://doi.org/10.1103/PhysRevA.85.065601
9. Leggio, B., Napoli, A., & Messina, A. (2012). Entanglement and heat capacity in a two-atom Bose–Hubbard model. Physics Letters A, 376(4), 339-343. https://doi.org/10.1016/j.physleta.2011.10.075
10. https://iopscience.iop.org/article/10.1088/1367-2630/11/9/093022/metaSilva-Valencia, J., & Souza, A. M. C. (2012). Superfluid-to-Mott insulator transition of bosons with local three-body interactions. The European Physical Journal B, 85(5), 161.https://doi.org/10.1140/epjb/e2012-20966-8
11. Bera, M. N., Prabhu, R., De, A. S., & Sen, U. (2012). Multisite entanglement acts as a better indicator of quantum phase transitions in spin models with three-spin interactions. arXiv preprint arXiv:1209.1523. https://arxiv.org/abs/1209.1523
12. Sun, J., Cui, G., Jiang, B., Qian, J., & Wang, Yu-Zhu. (2013). Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition. Chinese Physics B, 22(11), 110307. https://doi.org/10.1088/1674-1056/22/11/110307
13. Al-Jibbouri, H., Vidanović, I., Balaž, A., & Pelster, A. (2013). Geometric resonances in Bose–Einstein condensates with two-and three-body interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 46(6), 065303. https://doi.org/10.1088/0953-4075/46/6/065303
14. Huang, B., & Wan, S. (2013). Excitation spectrum and momentum distribution of Bose-Hubbard model with on-site two-and three-body interaction. Communications in Theoretical Physics, 59(3), 295. https://doi.org/10.1088/0253-6102/59/3/09
15. Al-Jibbouri, H. J. H. (2013). Collective excitations in Bose-Einstein condensates. (Doctoral dissertation, Free University of Berlin, Germany). http://www.physik.fu-berlin.de/~pelster/Theses/al-jibbouri.pdf
16. Varma, V. K. (2013). Critical, statistical, and thermodynamical properties of lattice models. (Doctoral dissertation, University of Bonn, Germany). http://hss.ulb.uni-bonn.de/2013/3396/3396.pdf
17. Daley, A. J. (2014). Quantum trajectories and open many-body quantum systems. Advances in Physics, 63(2), 77-149. https://doi.org/10.1080/00018732.2014.933502
18. Varma, V. K., & Monien, H. (2014). Renormalization of two-body interactions due to higher-body interactions of lattice bosons. Physical Review B, 90(8), 085138. https://doi.org/10.1103/PhysRevB.90.085138
19. Daley, A. J., & Simon, J. (2014). Effective three-body interactions via photon-assisted tunneling in an optical lattice. Physical Review A, 89(5), 053619. https://doi.org/10.1103/PhysRevA.89.053619
20. Petrov, D. S. (2014). Elastic multibody interactions on a lattice. Physical Review A, 90(2), 021601(R). https://doi.org/10.1103/PhysRevA.90.021601
21. Zhang, W., Li, R., Zhang, W. X., Duan, C. B., & Scott, T. C. (2014). Trimer superfluid induced by photoassocation on the state-dependent optical lattice. Physical Review A, 90(3), 033622. https://doi.org/10.1103/PhysRevA.91.033613
22. Avila, C. A., Franco, R., Souza, A. M. C., Figueira, M. S., & Silva-Valencia, J. (2014). Critical points of the Bose–Hubbard model with three-body local interaction. Physics Letters A, 378(44), 3233-3236. https://doi.org/10.1016/j.physleta.2014.09.061
23. Kopeć, T. K., & Szymański, M. W. (2014). Temperature effects on superfluid phase transition in Bose–Hubbard model with three-body interaction. Physics Letters A, 378(45), 3402-3405. https://doi.org/10.1016/j.physleta.2014.10.002
24. Avila, C. A., Franco, R., & Silva-Valencia, J. (2014). Evolution of the critical points with the density of bosons under local three-body interactions. Physica B: Condensed Matter, 455, 31-34. https://doi.org/10.1016/j.physb.2014.07.039
25. Cruz, G. J., Franco, R., & Silva-Valencia, J. (2014). Bose-Hubbard model with local two-and three-body interaction under off-diagonal confinement. Journal of Physics: Conference Series 480(1), 012003. https://doi.org/10.1088/1742-6596/480/1/012003
26. Sowiński, T., & Chhajlany, R. W. (2014). Mean-field approaches to the Bose–Hubbard model with three-body local interaction. Physica Scripta, 160, 014038. https://doi.org/10.1088/0031-8949/2014/T160/014038
27. Sowiński, T. (2014). One-dimensional Bose-Hubbard model with pure three-body interactions. Central European Journal of Physics, 12(7), 473-479. https://doi.org/10.2478/s11534-014-0481-8
28. Reyes, G. J. C. (2014). Diagrama de Fases de Átomos Bosónicos Sujetos a Confinamiento no Diagonal. http://bdigital.unal.edu.co/39650/1/greisjcruzr.2014.pdf
29. Dutta, O., Gajda, M., Hauke, P., Lewenstein, M., Lühmann, D. S., Malomed, B. A., ... & Zakrzewski, J. (2015). Non-standard Hubbard models in optical lattices: a review. Reports on Progress in Physics, 78(6), 066001. https://doi.org/10.1088/0034-4885/78/6/066001
30. Bai, X. D., Ai, Q., Zhang, M., Xiong, J., Yang, G. J., & Deng, F. G. (2015). Stability and phase transition of localized modes in Bose–Einstein condensates with both two-and three-body interactions. Annals of Physics, 360, 679-693. https://doi.org/10.1016/j.aop.2015.05.029
31. Travin, V. M., & Kopeć, T. K. (2015). Bose condensation in systems with p-particle tunneling and multi-body interactions. Journal of Physics A: Mathematical and Theoretical, 48(34), 345001. https://doi.org/10.1088/1751-8113/48/34/345001
32. Panigrahi, J. (2015). Bose-Einstein Condensates in optical lattices: study of its experimental signatures. http://ethesis.nitrkl.ac.in/6674/1/410ph5093_thesis.pdf
33. Hincapie-F, A. F., Franco, R., & Silva-Valencia, J. (2016). Mott lobes of the S= 1 Bose-Hubbard model with three-body interactions. Physical Review A, 94(3), 033623. https://doi.org/10.1103/PhysRevA.94.033623
34. Singh, M., & Mishra, T. (2016). Three-body interacting dipolar bosons and the fate of lattice supersolidity. Physical Review A, 94(6), 063610. https://doi.org/10.1103/PhysRevA.94.063610
35. Ding, H., & Zhang, J. (2016). Insight into nearest neighboring three-and four-electron processes in a one-dimensional correlated lattice system. Journal of the Physical Society of Japan, 85(5), 054704. https://doi.org/10.7566/JPSJ.85.054704
36. Nabi, S. N., & Basu, S. (2016). Disorder, three body interaction and Bose glass phase in a spinor atomic gas in an optical lattice. Journal of Physics: Conference Series 759(1), 012035. https://doi.org/10.1088/1742-6596/759/1/012035
37. Nabi, S. N., & Basu, S. (2016). Three body interaction effects on the phase diagram of spinor bosons. Journal of Physics: Conference Series 759(1), 012034. https://doi.org/10.1088/1742-6596/759/1/012034
38. Nabi, S. N., & Basu, S. (2016). Spin-1 bosons in an external magnetic field and a three body interaction potential. arXiv preprint arXiv:1606.02897. https://arxiv.org/abs/1606.02897
39. Fresneda, A. F. H. (2017). Spin-1 bosonic gases in one-dimension. http://www.bdigital.unal.edu.co/61354/1/1015435392.2017.pdf
40. Nabi, S. N., & Basu, S. (2018). Quantum phases of a spin-1 ultracold Bose gas with three-body interactions. EPL (Europhysics Letters), 121(4), 46002. https://doi.org/10.1209/0295-5075/121/46002
41. Hao, Y., & Huang, B. (2018). Macroscopic quantum tunneling of Bose-Einstein condensate with interaction. Journal of Physics: Conference Series, 1053, 012075. https://doi.org/10.1088/1742-6596/1053/1/012075