Space exploration generates excitement and captures imaginations, while also leading to major breakthroughs in science and technology. However, the rockets used to launch spacecraft are very expensive, and most can only be used one time. To prepare for future large-scale space projects, such as space colonization, scientists must find a cheaper and faster launch system. NASA scientists believe that a promising technology already exists in the form of electromagnetic launch systems, but the technology needs further development. In the role of physicists working for the Universal Space Agency, a fictional agency that resembles NASA, students investigate the unexpected results from one test launch of a magnetic spacecraft. While scientists at the USA were testing the launch system, they found that the spacecraft in their third test traveled much faster than expected, and it's this unexpected outcome that serves as the anchor phenomenon for student investigations in the unit. Was there an error in magnet alignment? Was there an unexpected energy increase in the launcher system, or was there more magnetic force? Motivated to understand what affects the movement of magnets, students use the Magnetic Fields Simulation, hands-on activities, and evidence from science articles to learn about magnetic force. Student gain an understanding of how magnetic force causes motion and the relationship of magnetic force to kinetic and potential energy. Students use this newfound understanding, as well as evidence about the spacecraft test launches, to explain what they think happened in the third test. They then apply their knowledge to analyzing three designs for a magnetic roller coaster launcher.