All finalist talks
of the PEC 2020 Nottingham Prize Competition
of the PEC 2020 Nottingham Prize Competition
Nottingham Prize Winner: Mounika Vutukuru
Exploring the Flatland: Strain Engineering of 2D Materials to Probe Exotic Physics
Using Raman and Photoluminescence Spectroscopy
Using Raman and Photoluminescence Spectroscopy
Mounika Vutukuru, Prof. Anna K. Swan
Dept. of Electrical and Computer Engineering, Boston Univerisity
In my talk, I will discuss the strain-emergent phenomena arising from distorted lattices of 2D materials, strained by nanopillars indentation and microelectromechanical systems (MEMS), observed through Raman and photoluminescence (PL) spectroscopy. From exciton and charge carrier funneling to dynamically tunable layer commensuration, we probe the novel physics in strained MoS2 and multilayer graphene. Funneling experiments show signatures of electron-hole plasma formation due to dramatic localization of charge carriers and excitons. I also discuss computational modeling of graphene integrated MEMS using machine learning, to optimize pseudomagnetic field formation for use in straintronics.
References
[1] M. Vutukuru, H. Ardekani, Z. Chen, W. Luo, X. Ling, K. Gundogdu, and A. K. Swan, In Preparation (2020). (01:32, 02:26, 03:32, 04:11)
[2] H. Ardekani, M. Vutukuru, Z. Chen, A. K. Swan, and K. Gundogdu, In Preparation (2020). (02:26)
[3] M. Vutukuru, J. Christopher, C. Pollock, D. J. Bishop, and A. K. Swan, J. Microelectromechanical Syst., vol. 28, no. 3 (2019) https://doi.org/10.1109/JMEMS.2019.2902757 (05:01)
[4] M. Vutukuru, Z. Chen, R. Jayne, and A. K. Swan, Under Review (2020). (05:01)
[5] J. Christopher, M. Vutukuru, D. Lloyd, J. S. Bunch, D. J. Bishop, and A. K. Swan, J. Microelectromechanical Syst., vol. 28, no. 2 (2019). https://doi.org/10.1109/JMEMS.2018.2877983 (05:55)
[6] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett., vol. 13, no. 8, (2013). https://doi.org/10.1021/nl4014748 (05:55)
[7] M. Vutukuru, Z. Chen, Z. Wu, and A. K. Swan, In Preparation (2020). (06:28, 07:08)
[8] A. C. Ferrari, and D. M. Basko, Nat. Nanotechnol., vol. 8, no. 4 (2013). https://doi.org/10.1038/nnano.2013.46 (07:31)
[9] L. Gong, R. J. Young, I. A. Kinloch, S. J. Haigh, J. H. Warner, J. A. Hinks, Z. Xu, L. Li, F. Ding, I. Riaz, R. J, and K. S. Novoselov, ACS Nano, vol. 7, no. 8 (2013). https://doi.org/10.1021/nn402830f (07:31)
[10] A. W. Bataller, R. A. Younts, A. Rustagi, Y. Yu, H. Ardekani, A. Kemper, L. Cao, and K. Gundogdu, Nano Lett., vol. 19, no. 2 (2019). https://doi.org/10.1021/acs.nanolett.8b04408 (08:32)
[11] S. Zhu, J. A. Stroscio, and T. Li, Phys. Rev. Lett., vol. 115, no. 24 (2015). https://doi.org/10.1103/PhysRevLett.115.245501 (09:06)
[12] Z. Chen, M. Vutukuru, J. Inirio, P. Hanakata, and A. K. Swan, In Preparation (2020). (09:06)
Nottingham Prize Nominees
Pulsed laser deposition of functional oxides with atomic scale control
G. Franceschi,1 M. Schmid,1 U. Diebold, and M. Riva1
1 Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10/E134, 1040, Vienna(Austria)
The pulsed laser deposition of complex-oxide films is extremely sensitive to the growth parameters: If these are not optimized, the films exhibit strong non-stoichiometries, rough morphologies, and unexpected physical properties. To pinpoint the origin of the non-idealities and optimize film growth, sensitive tools are needed. In this video, I show how surface science can be used to this end: Monitoring the evolution of the atomic-scale surface structure during growth reveals the effect of the deposition parameters, and can be used to predict the film’s evolution. The approach presented could be extended to a large variety of complex materials.
References
[1] Balla et al., Mater. Res. Innovations 4, 3 (2000) https://doi.org/10.1007/s100190000062; Pena et al.,
Chem. Rev. 101, 1981 (2001), https://doi.org/10.1021/cr980129f; Kumah et al., Adv. Funct. Mater.,
1901597 (2019), https://doi.org/10.1002/adfm.201901597; Zubko et al., Annu. Rev. Condens. Matter Phys.
2, 141 (2011), https://doi.org/10.1146/annurev-conmatphys-062910-140445 (00:38)
[2] Ojeda et al., Adv. Mater. Interfaces 5, 1701062 (2018), https://doi.org/10.1002/admi.201701062 (01:14)
[3] Gerhold et al., Surf. Sci. 651, 76 (2016), https://doi.org/10.1016/j.susc.2016.03.010 (01:33)
[4] Riva, Franceschi et al., Phys. Rev. Mater. 3, 043802 (2019),
https://doi.org/10.1103/PhysRevMaterials.3.043802 (01:44)
[5] Riva, Franceschi, et al., Phys. Rev. Research 1, 033059 (2019),
https://doi.org/10.1103/PhysRevResearch.1.033059 (01:44, 02:05)
[6] Franceschi, et al., J. Mat. Chem. A, 8, 22947 (2020), https://doi.org/10.1039/D0TA07032G (01:46, 05:34)
[7] Franceschi et al., “2D phase diagram of a multicomponent perovskite oxide: La 0.8 Sr 0.2 MnO 3 (110)”,
submitted (01:46)
[8] Ohnishi et al., J. Appl. Phys. 103, 103703 (2008), https://doi.org/10.1063/1.2921972; Wicklein et al.,
Appl. Phys. Lett. 101, 131601 (2012), https://doi.org/10.1063/1.4754112; Dam et al., J. Appl. Phys. 83, 3386
(1998), https://doi.org/10.1063/1.367106 (02:14)
[9] Wang et al., Phys. Rev. B 83, 155453 (2011), https://doi.org/10.1103/PhysRevB.83.155453 (02:56)
Real-Time Atomic Visualization of Surface Reactions: A New Approach of Studying Fundamental Surface Dynamics
Tim Grabnic
The James Franck Institute and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637
Presented herein is a powerful new approach to studying fundamental surface dynamics that utilizes a unique combination of a supersonic molecular beam and in-line, in-situ scanning tunneling microscope (STM). The reactive dynamics of three systems is explored: O 2 reactive etching of highly-oriented pyrolytic graphite (HOPG), O 2 oxidation of GaAs(110), and the activated dissociative chemisorption of N 2 on Ru(0001). The atomically-resolved morphological evolution of each system is monitored during exposures to energy- and angle-selected gas molecules. The data obtained in these studies elucidates the spatiotemporal correlations that govern these important gas-surface interfaces.
References
(1) Wiggins, B.; Avila-Bront, L. G.; Edel, R.; Sibener, S. J. Temporally and Spatially Resolved Oxidation of Si(111)-(7 × 7) Using Kinetic Energy Controlled Supersonic Beams in Combination with Scanning Tunneling Microscopy. The Journal of Physical Chemistry C 2016, 120 (15), 8191–8197. https://doi.org/10.1021/acs.jpcc.6b01360. (01:23)
(2) Edel, R.; Grabnic, T.; Wiggins, B.; Sibener, S. J. Atomically-Resolved Oxidative Erosion and Ablation of Basal Plane HOPG Graphite Using Supersonic Beams of O 2 with Scanning Tunneling Microscopy Visualization. The Journal of Physical Chemistry C 2018, 122 (26), 14706–14713. https://doi.org/10.1021/acs.jpcc.8b04139. (01:23)
(3) Grabnic, T.; Edel, R.; Sibener, S. J. Room Temperature Oxidation of GaAs(110) Using High Translational Kinetic Energy Molecular Beams of O2 Visualized by STM. Surface Science 2020, 692, 121516. https://doi.org/10.1016/j.susc.2019.121516. (01:23)
(4) SpaceTee Vee. NASA’s Simulation Video Shows What Orion’s Re-Entry Will Be Like; 2014. YouTube. https://www.youtube.com/watch?v=nh9GunlNq3Y. (01:52)
(5) Delehouzé, A.; Rebillat, F.; Weisbecker, P.; Leyssale, J.-M.; Epherre, J.-F.; Labrugère, C.; Vignoles, G. L. Temperature Induced Transition from Hexagonal to Circular Pits in Graphite Oxidation by O2. Appl. Phys. Lett. 2011, 99 (4), 044102. https://doi.org/10.1063/1.3615801. (02:44)
(6) Stevens, F.; Beebe, T. P. Computer Modeling of Graphite Oxidation: Differences between Monolayer and Multilayer Etching. Computers & Chemistry 1999, 23 (2), 175–183. https://doi.org/10.1016/S0097-8485(98)00031-X. (02:44)
(7) Olander, D. R.; Siekhaus, W.; Jones, R.; Schwarz, J. A. Reactions of Modulated Molecular Beams with Pyrolytic Graphite. I. Oxidation of the Basal Plane. The Journal of Chemical Physics 1972, 57 (1), 408–420. https://doi.org/10.1063/1.1677980. (03:16)
(8) Olander, D. R.; Jones, R. H.; Schwarz, J. A.; Siekhaus, W. J. Reactions of Modulated Molecular Beams with Pyrolytic Graphite. II Oxidation of the Prism Plane. The Journal of Chemical Physics 1972, 57 (1), 421–433. https://doi.org/10.1063/1.1677981. (03:16)
(9) Murray, V. J.; Marshall, B. C.; Woodburn, P. J.; Minton, T. K. Inelastic and Reactive Scattering Dynamics of Hyperthermal O and O2 on Hot Vitreous Carbon Surfaces. J. Phys. Chem. C 2015, 119 (26), 14780–14796. https://doi.org/10.1021/acs.jpcc.5b00924. (03:16)
(10) Whitesides, George. M. Materials for Advanced Electronic Devices. In Biotechnology and Materials Science: Chemistry for the Future; Good, M., L., Baum, R., Peterson, I., Henderson, N., Eds.; American Chemical Society: Washington, DC, 1988; pp 85–99. (04:17)
(11) Landgren, G.; Ludeke, R.; Morar, J. F.; Jugnet, Y.; Himpsel, F. J. Oxidation of GaAs(110): New Results and Models. Physical Review B 1984, 30 (8), 4839–4841. https://doi.org/10.1103/PhysRevB.30.4839. (05:13)
(12) Childs, K. D.; Lagally, M. G. Species-Specific Densities of States of Ga and As in the Chemisorption of Oxygen on GaAs(110). Phys. Rev. B 1984, 30 (10), 5742–5752. https://doi.org/10.1103/PhysRevB.30.5742. (05:55)
(13) Stroscio, J. A.; Feenstra, R. M.; Fein, A. P. Structure of Oxygen Adsorbed on the GaAs(110) Surface Studied Using Scanning Tunneling Microscopy. Phys. Rev. B 1987, 36 (14), 7718–7721. https://doi.org/10.1103/PhysRevB.36.7718. (05:55)
(14) Mönch, W. Oxidation of Silicon and III–V Compound Semiconductors. In Semiconductor Surfaces and Interfaces; Mönch, W., Ed.; Springer Series in Surface Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; pp 353–376. https://doi.org/10.1007/978-3-662-04459-9_17. (05:55)
(15) Modak, J. M. Haber Process for Ammonia Synthesis. 2011, 9. https://en.wikipedia.org/wiki/Haber_process. (06:36)
(16) Rosowski, F.; Hornung, A.; Hinrichsen, O.; Herein, D.; Muhler, M.; Ertl, G. Ruthenium Catalysts for Ammonia Synthesis at High Pressures: Preparation, Characterization, and Power-Law Kinetics. Applied Catalysis A: General 1997, 151 (2), 443–460. https://doi.org/10.1016/S0926-860X(96)00304-3. (06:43)
(17) Dahl, S.; Taylor, P. A.; Törnqvist, E.; Chorkendorff, I. The Synthesis of Ammonia over a Ruthenium Single Crystal. Journal of Catalysis 1998, 178 (2), 679–686. https://doi.org/10.1006/jcat.1998.2168. (06:43)
(18) Ertl, G. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angewandte Chemie International Edition 2008, 47 (19), 3524–3535. https://doi.org/10.1002/anie.200800480. (06:43)
(19) Langmuir, I. Part II.—“Heterogeneous Reactions”. Chemical Reactions on Surfaces. Trans. Faraday Soc. 1922, 17 (0), 607–620. https://doi.org/10.1039/TF9221700607. (06:43)
(20) Dietrich, H.; Geng, P.; Jacobi, K.; Ertl, G. Sticking Coefficient for Dissociative Adsorption of N2 on Ru Single‐crystal Surfaces. J. Chem. Phys. 1996, 104 (1), 375–381. https://doi.org/10.1063/1.470836. (07:16)
(21) Zambelli, T.; Trost, J.; Wintterlin, J.; Ertl, G. Diffusion and Atomic Hopping of N Atoms on Ru(0001) Studied by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1996, 76 (5), 795–798. https://doi.org/10.1103/PhysRevLett.76.795. (07:16)
(22) Trost, J.; Zambelli, T.; Wintterlin, J.; Ertl, G. Adsorbate-Adsorbate Interactions from Statistical Analysis of STM Images: N/Ru(0001). Physical Review B 1996, 54 (24), 17850–17857. https://doi.org/10.1103/PhysRevB.54.17850. (07:16)
(23) Herron, J. A.; Tonelli, S.; Mavrikakis, M. Atomic and Molecular Adsorption on Ru(0001). Surface Science 2013, 614, 64–74. https://doi.org/10.1016/j.susc.2013.04.002. (07:16)
(24) Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of Steps in N 2 Activation on Ru(0001). Physical Review Letters 1999, 83 (9), 1814–1817. https://doi.org/10.1103/PhysRevLett.83.1814. (07:16)
(25) C. Egeberg, R.; H. Larsen, J.; Chorkendorff, I. Molecular Beam Study of N 2 Dissociation on Ru(0001). Physical Chemistry Chemical Physics 2001, 3 (11), 2007–2011. https://doi.org/10.1039/B101177O. (07:16)
(26) Romm, L.; Katz, G.; Kosloff, R.; Asscher, M. Dissociative Chemisorption of N2 on Ru(001) Enhanced by Vibrational and Kinetic Energy: Molecular Beam Experiments and Quantum Mechanical Calculations. The Journal of Physical Chemistry B 1997, 101 (12), 2213–2217. https://doi.org/10.1021/jp962599o. (07:16)
(27) Malbon, C. L.; Zhao, B.; Guo, H.; Yarkony, D. R. On the Nonadiabatic Collisional Quenching of OH(A) by H 2 : A Four Coupled Quasi-Diabatic State Description. Physical Chemistry Chemical Physics 2020, 22 (24), 13516–13527. https://doi.org/10.1039/D0CP01754J. (08:20)
Direct Evidence of Graphene-Induced Molecular Reorientation in Polymer Films
A. J. Carr1 , A. Head2 , J. A. Boscoboinik2, S. R. Bhatia1, M. D. Eisaman3
1 Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY, 11794
2 Center for Functional Nanomaterials, Brookhaven National Laboratory, 98 Rochester St., Upton, NY 11973
3 Department of Electrical and Computer Engineering, Stony Brook University, 100 Nicolls Rd., Stony Book, NY 11794
In this research, we demonstrated novel graphene-induced polymer chain reorientation using, for the first time, polarization-modulated infrared reflection absorption spectroscopy. Polymer movement was observed and correlated to both polymer composition and conformation in space. We then connected these data to large-scale graphene-polymer adhesion by transferring chemical vapor deposition-grown graphene from its native metal substrate to polymer films and determining successful graphene coverage using spatially resolved optical transmission. Taken together, these data imply that graphene-polymer adhesion can be fine-tuned by changing interfacial interactions. Such results pave the way toward flexible, conductive graphene-polymer composites with applications in energy storage, electronics, and biointerfaces.
References
[1] A. J. Carr; A. Head; J. A. Boscoboinik; S. R. Bhatia; M. D. Eisaman. Adv. Mater. Interfaces, 12 (2020), https://doi.org/10.1002/admi.202000113
[2] A. J. Carr; D. DeGennaro; J. Andrade; A. Barrett; S. R. Bhatia; M. Eisaman. 2D Mater., in press (2020), https://doi.org/10.1088/2053-1583/abcbe7 (6:10)
Nottingham Prize Finalists
Effect of Forces on Chemical Reaction Kinetics
Alejandro M. Boscoboinik1* and Wilfred T. Tysoe1
1Department of Chemistry & Biochemistry, University of Wisconsin Milwaukee,
3210 N Cramer St, Milwaukee, WI 5321, USA
Email: boscobo2@uwm.edu
In Bell’s model the rate constant for a reaction under an applied stress 𝜎 is given by, where 𝑘𝐵 is the Boltzmann constant, 𝑘0 is the reaction rate constant in the absence of stress, ∆𝑉‡ is known as the activation volume, and 𝑇 is the absolute temperature. While exponential increases in reaction rates with stress have been reported, there are currently no quantitative experimental measurements of . This is addressed in this work by using contact-mode atomic force microscopy (AFM) to measure the kinetics of the mechanochemically induced C-S bond cleavage of methyl thiolate on Cu(100) in ultrahigh vacuum.
References
[1] Theophrastus, H. J. Theophrastus’s history of stones: with an English version, and critical and philosophical notes, including the modern history of the gems, &c., described by that author, and of many other of the native fossils. London (1774). (00:17, 00:31)
[2] Furlong et. al., Langmuir, 26, 16375 (2010), https://doi.org/10.1021/la101769y (01:13, 01:22), (04:37, 04:57)
[3] G. I. Bell, Cell Biophys. 1, 133 (1979), https://doi.org/10.1007/BF02781347 (01:32, 03:07)
[4] Zhang et al, Tribol. Letts. 63, 24 (2016), https://doi.org/10.1007/s11249-016-0706-7 (03:08, 03:35)
[5] Felts et al, Nano Lett. 17, 2111–2117 (2017), https://doi.org/10.1021/acs.nanolett.6b03457 (03:08, 03:35)
[6] Gosvami et al, Science. 348, 102-106 (2015), https://doi.org/10.1126/science.1258788 (03:08, 03:35)
[7] Tysoe, Tribol. Lett. 65, 48 (2017), https://doi.org/10.1007/s11249-017-0832-x (03:36, 03:41)
[8] H. L. Adams, UWM Theses/Dissertations. 1566, 145, (2017), https://dc.uwm.edu/etd/1566 (05:10, 05:30)
[9] A. M. Boscoboinik, et al., Chem. Commun. 56, 7730-7733, (2020), https://doi.org/10.1039/D0CC02992K (05:37, 09:08)
[10] A. M. Boscoboinik, et al., Stress Anisotropy of Mechanochemical Reaction Rates. In preparation (09:09, 09:17)
[11] NSF Center for the Mechanical Control of Chemistry (CMCC), https://www.chem.tamu.edu/cmcc (09:33, 08:54)
Reversible Formation of Silanol Groups in Two-Dimensional Siliceous Nanomaterials under Mild Hydrothermal Conditions
A.M. Norton,1,2 J.A. Boscoboinik1,3
1Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA
2Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
3Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
Monitoring the effects of mild hydrothermal conditions, in situ, on siliceous materials remains challenging using surface science techniques, which often require electrically conductive substrates. The emergence of two-dimensional (2-D) siliceous nanomaterials deposited on metal single crystals overcomes this limitation. Here, we use infrared reflection absorption spectroscopy (IRRAS) to study the effects of mild hydrothermal conditions, in situ, on 2-D model systems, namely all-Si MFI nanosheets supported on Au(111) and a polymorphous bilayer silicate supported on Ru(0001). We find that the formation of silanol groups (SiOH) occurs at 473 and 573 K under a H2O pressure of 3 mbar in the MFI nanosheets, but not in the polymorphous bilayer silicate. The effects of mild hydrothermal conditions are reversible in the MFI nanosheets and do not result in framework degradation. Implications shown here provide a fundamental understanding of the impact of mild hydrothermal conditions on 2-D siliceous nanomaterials and serve as a starting point when considering these effects on 3-D ones.
References
H.J. Cho, L. Ren, V. Vattipalli, Y. Yeh, N. Gould, B. Xu, R.J. Gorte, R.F. Lobo, P.J. Dauenhauer, M. Tsapatsis, W. Fan, ChemCatChem, 9, 3 (2017), https://doi.org/10.1002/cctc.201601294 (0:46)
K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Science, 334, 6052 (2011), https://10.1126/science.1208891 (0:48)
C.K.W. Meininghaus, R. Prins, Micropor. Mesopor. Mat., 35, (2000), https://10.1016/S1387-1811(99)00233-4 (0:56)
B. Elyassi, X. Zhang, M. Tsapatsis, Micropor. Mesopor. Mat., 193, (2014), https://10.1016/j.micromeso.2014.03.012 (1:29)
K.V. Agrawal, B. Topuz, Z. Jiang, K. Nguenkam, B. Elyassi, L.F. Francis, M. Tsapatsis, M. Navarro, AIChE J., 59, 6 (2013), https://doi.org/10.1002/aic.14099 (2:38)
M.Y. Jeon, D. Kim, P. Kumar, P. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H. S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. DeJaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Nature, 543, 7647 (2017), https:10.1038/nature21421 (2:38)
D. Löffler, J. J. Uhlrich, M. Baron, B. Yang, X. Yu, L. Lichtenstein, L. Heinke, C. Büchner, M. Heyde, S. Shaikhutdinov, H.-J. Freund, R. Włodarczyk, M. Sierka, and J. Sauer, Phys. Rev. Lett., 105, 14 (2010), https://doi.org/10.1103/PhysRevLett.105.146104 (2:53)
J.A. Boscoboinik, X. Yu, B. Yang, F.D. Fischer, R. Włodarczyk, M. Sierka, S. Shaikhutdinov, J. Sauer, H.-J. Freund, Angew. Chemie, 51, 24 (2012), https://doi.org/10.1002/anie.201201319 (2:53)
J.D. Kestell, J.-Q. Zhong, M. Shete, I. Waluyo, J.T. Sadowski, D.J. Stacchiola, M. Tsapatsis, J. A. Boscoboinik, Catal. Today, 280, (2017), https://doi.org/10.1016/j.cattod.2016.07.015 (4:36)
A.M. Norton, D. Kim, W. Zheng, N. Akter, Y. Xu, S.A. Tenney, D.G. Vlachos, M. Tsapatsis, J. A. Boscoboinik, J. Phys. Chem. C., 124, 33 (2020), https://doi.org/10.1021/acs.jpcc.0c03875. (4:36, 5:04, 5:28, 5:49, 7:08, 8:35, 8:58)
Elucidating Determining Factors in Heterogeneous Catalysis Using Surface Science Models
Christopher R. O’Connor 1 and Cynthia M. Friend 1,2
1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
2 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Heterogeneous catalysis is used extensively in the production of fuels and chemicals, thereby, having a major impact on worldwide energy use and greenhouse gas production and stimulating interest in the development of more efficient catalytic processes. This work investigates model single crystal systems to understand the effects of complex surface dynamics on bimetallic catalyst reactivity. Fundamental principles that guide the formation and restructuring of bimetallic interfaces and the interfacial migration of intermediates is presented. The coupling of material evolution and reactive species migration with a dramatic impact on reactivity is demonstrated, which must be considered when examining bimetallic surfaces.
References
[1] van Spronsen, M. A.; Daunmu, K.; O’Connor, C. R.; Egle, T.; Kersell, H.; Oliver-Meseguer, J.; Salmeron, M. B.; Madix, R. J.; Sautet, P.; Friend, C. M. Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O 2 . The Journal of Physical Chemistry C 2019, 123 (13), 8312–8323. https://doi.org/10.1021/acs.jpcc.8b08849 (0:00, 2:46, 3:14, 9:06).
[2] Lim, J. S.; Vandermause, J.; van Spronsen, M. A.; Musaelian, A.; Xie, Y.; Sun, L.; O’Connor, C. R.; Egle, T.; Molinari, N.; Florian, J.; Duanmu, K.; Madix, R. J.; Sautet, P.; Friend, C. M.;
Kozinsky, B. Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics. Journal of the American Chemical Society 2020, 142 (37), 15907–15916. https://doi.org/10.1021/jacs.0c06401 (0:00, 2:46, 3:14, 9:06).
[3] O’Connor, C. R.; Duanmu, K.; Patel, D. A.; Muramoto, E.; van Spronsen, M. A.; Stacchiola, D.; Sykes, E. C. H.; Sautet, P.; Madix, R. J.; Friend, C. M. Facilitating Hydrogen Atom Migration via a Dense Phase on Palladium Islands to a Surrounding Silver Surface. Proceedings of the National Academy of Sciences 2020, 117 (37), 22657–22664. https://doi.org/10.1073/pnas.2010413117 (0:00, 4:17, 4:50, 9:06).
[4] O’Connor, C. R.; van Spronsen, M. A.; Egle, T.; Xu, F.; Kersell, H. R.; Oliver-Meseguer, J.; Karatok, M.; Salmeron, M.; Madix, R. J.; Friend, C. M. Hydrogen Migration at Restructuring
Palladium–Silver Oxide Boundaries Dramatically Enhances Reduction Rate of Silver Oxide. Nature Communications 2020, 11 (1), 1844. https://doi.org/10.1038/s41467-020-15536-x (0:00, 6:23, 6:50, 9:06).
[5] U. S. Energy Information Administration, Annual Energy Outlook, 2017, Tables 25-35 (0:24).
[6] J. van der Hoeven, unpublished data (2:02).
[7] Herbschleb, C. T.; Van Der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Van Spronsen, M. A.; Bergman, M.; Crama, L.; Taminiau, I.; Ofitserov, A.; Van Baarle, G. J. C.; Frenken, J. W. M. The ReactorSTM: Atomically Resolved Scanning Tunneling Microscopy under High-Pressure, High-Temperature Catalytic Reaction Conditions. Review of Scientific Instruments 2014, 85 (8). https://doi.org/10.1063/1.4891811 (2:02).
Electronic correlations and the semi-adsorption-controlled growth window of the semiconducting half-Heusler compound FeVSb
Estiaque H. Shourov 1 , and Jason K. Kawasaki 1
1 Materials Science and Engineering, University of Wisconsin Madison,
1509 University Avenue, Madison, WI 53706, USA
I present a novel correlated band insulator: FeVSb. Although the effects of correlations are well established for metallic systems, correlations in band insulators remain poorly understood. Using angle-resolved photoemission spectroscopy (ARPES) measurements, we reveal a mass enhancement of 1.4 in epitaxial FeVSb films with respect to the density functional theory (DFT) band mass. Our ARPES measurements quantitatively agree with dynamical mean field theory (DMFT) calculations, suggesting that many body correlations are essential to understanding its electronic structure. Here, I also present a semi-absorption-controlled molecular beam epitaxy (MBE) growth window for FeVSb in which the Sb stoichiometry is self-limiting.
References
1. A. Tamai, A. Y. Ganin, E. Rozbicki et al., Phys. Rev. Lett. 104, 097002 (2010), https://doi.org/10.1103/PhysRevLett.104.097002 (00: 59).
2. S. Aizaki, T. Yoshida, K. Yoshimatsu, M. Takizawa et al., Phys. Rev. Lett. 109, 056401 (2012), https://doi.org/10.1103/PhysRevLett.109.056401 (01: 07).
3. D. Sutter, C. Fatuzzo, S. Moser et al., Nat Commun 8, 15176 (2017), https://doi.org/10.1038/ncomms15176 (01: 11).
4. M. Arita, K. Shimada, Y. Takeda, M. Nakatake et al., Phys. Rev. B 77, 205117 (2008), https://doi.org/10.1103/PhysRevB.77.205117 (01: 33).
5. Y. Nishino et al., Phys. Rev. Lett. 79, 10 (1997), https://doi.org/10.1103/PhysRevLett.79.1909 (01: 35).
6. E. H. Shourov et al., Phys. Rev. Materials 4, 073401 (2020), https://doi.org/10.1103/PhysRevMaterials.4.073401 (03: 25).
Spin Crossover Phenomenon and Insights in Future Molecular Spintronic Devices
Guanhua (Tibbers) Hao, Peter A. Dowben
Our research sheds light on several fundamental aspects of the spin crossover system. The bistability & cooperative effects allow for implementation of the binary logic in devices. Nonvolatile voltage control of the spin state gives evidence for dipole interaction of the molecule at ferroelectric interface, this makes the fabrication of molecular spin transistor possible. Modification of the barrier energy via magnetic field supports the influence of cooperative effects, and could add further tuning components along the electric alteration. All of these results point to new types of molecular spintronic devices, with nano-meter length scale, sufficient fidelity and low energy consumption.
References
Publication Reference:
[1] X. Zhang et al., Adv. Mater. 29, 1702257 (2017), https://doi.org/10.1002/adma.201702257 (02:39)
[2] X. Jiang, G. Hao et al., J. Condens. Matter 31, 315401 (2019), https://doi.org/10.1088/1361-648X/ab1a7d (04:03)
[3] G. Hao et al., Appl. Phys. Lett. 114, 032901 (2019), https://doi.org/10.1063/1.5054909 (05:48)
Music Reference:
A. Marc Jungermann - Vlogger's Delight, https://www.youtube.com/watch?v=rxbNwPE4dfo (00:00)
B. Legend From Heaven | Background Music for Videos, https://www.youtube.com/watch?v=cNNESlJtfdQ (00:27)
C. Legend From Heaven | Background Music for Videos, https://www.youtube.com/watch?v=-0X7Pdk45Fg (09:48)
The Study of the Effects of Local Environments on the Fundamental Interactions that Determine Chemistry with Scanning Tunneling Microscopy and Tip-Enhanced Raman Spectroscopy
J. F. Schultz and N. Jiang
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
Ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) – tip-enhanced Raman spectroscopy (TERS) combines the spatial resolution of the scanning tunneling microscope with the chemical information available through optical-based vibrational spectroscopy, specifically Raman spectroscopy. Here, I describe some of my work in developing this tandem technique and new applications towards the study of highly localized chemical effects on surfaces. These efforts include studies of molecule-substrate and intermolecular interactions, as well as surface-bound reactions. Overall, UHV-STM-TERS was found to enable the direct visualization of fundamental properties and interactions that would otherwise remain hidden in ensemble-based spectroscopic studies.
References
[1] B. C. Stipe, M. A. Rezaei, W. Ho, Phys. Rev. Lett. 82, 8 (1999), https://doi.org/10.1103/PhysRevLett.82.1724 Time: (01:48)
[2] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. V. Duyne, Annu. Rev. Anal. Chem. 1, 1 (2008), https://doi.org/10.1146/annurev.anchem.1.031207.112814 Time: (02:42)
[3] J. F. Schultz, S. Li, S. Jiang, N. Jiang, J. Phys.: Condens. Matter 32, 46 (2020),https://doi.org/10.1088/1361-648x/aba8c7 Time: (03:36)
[4] J. F. Schultz, S. Mahapatra, L. Li, N. Jiang, Appl. Spectrosc. 74, 11 (2020), https://doi.org/10.1177/0003702820932229 Time: (03:36)
[5] S. Mahapatra, L. Li, J. F. Schultz, N. Jiang, J. Raman Spectrosc. (2020), https://doi.org/10.1002/jrs.5951 Time: (04:06)
[6] P. J. Whiteman, J. F. Schultz, Z. D. Porach, H. Chen, N. Jiang, J. Phys. Chem. C 122, 10 (2018), https://doi.org/10.1021/acs.jpcc.7b12068 Time: (04:31, 04:47, 09:09)
[7] S. Mahapatra, J. F. Schultz, Y. Ning, J.-L. Zhang, N. Jiang, Nanoscale 11, 42 (2019), https://doi.org/10.1039/C9NR06830A Time: (04:31, 09:09)
[8] J. F. Schultz, L. Li, S. Mahapatra, C. Shaw, X. Zhang, N. Jiang, J. Phys. Chem. C 124, 4 (2020), https://doi.org/10.1021/acs.jpcc.9b09162 Time: (04:31, 06:36, 09:09)
[9] S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, N. Jiang, Nano Lett. 19, 5 (2019), https://doi.org/10.1021/acs.nanolett.9b00826 Time: (04:31, 07:51, 09:09)
[10] J. F. Schultz, B. Yang, N. Jiang, Nanoscale 12, 4 (2020), https://10.1039/C9NR09857G Time: (04:31, 08:09, 09:09)
[11] J. F. Schultz, B. Yang, N. Jiang, (submitted) Time: (09:15)
Predictive Modeling of Nanocrystal Evolution: Reshaping of Truncated Pd Nanocubes
King C. Lai, 1,2 M. Chen3, B. Williams3, Y. Han1,2, C.-K. Tsung3, W. Huang4, J.W. Evans1,2
1 Ames Laboratory−USDOE, Division of Chemical & Biological Sciences, Ames, Iowa 50011.
2 Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011.
3 Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467.
4 Department of Chemistry, Iowa State University, Ames, Iowa 50011.
Functional metallic nanoclusters or nanocrystals (NCs) with tailored non-equilibrium structure are not static nor frozen, but instead dynamic. This applies not just in working environments and in vacuum. In particular, NCs can suffer morphological changes back towards their equilibrium forms. Thus, functionality can degrade with time. My 10-minute presentation will focus on our results from applying our model and developing additional theory for reshaping of palladium nanocubes size ~20 nm. Theory is complimented and validated by TEM experiments and kinetic Monte Carlo (KMC) simulations.
References
[1] Xia et al. Angew. Chem., Int. Ed. 2009, 48 , 60−103. https://doi.org/10.1002/anie.200890275 (00:12)
[2] Lai et al. ACS Nano 2020, 14 (7), 8551–8561. https://doi.org/10.1021/acsnano.0c02864
[3] Lu et al. RSC Adv., 2017 , 7, 18601-18608. (00:20, all contents after 01:02)
https://doi.org/10.1039/C7RA01223C (00:21)
https://doi.org/10.1039/C1CE05602F (00:23)
https://doi.org/10.1021/ja507728j (00:24)
https://doi.org/10.1103/PhysRevMaterials.3.026001 (00:34)
[4] Mariscal et al. Cryst. Eng. Comm. 2012, 14 , 544.
[5] Lacroix et al. J. Am. Chem. Soc. 2014 , 136, 38, 13075–13077.
[6] K. C. Lai and J. W. Evans Phys. Rev. Materials 2019, 3, 026001.
Ultrafast temperature evolution in plasmonic Au nanoparticles: a model-free approach
M. Ferrera, 1 F. Bisio, 2 and M. Canepa 1
1 OptMatLab, Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
2 CNR-SPIN, C.so Perrone 24, I-16152 Genova, Italy
I present a model-independent approach, relying upon the exploitation of time-resolved optical and electronic spectroscopies, in the quest for the direct assessment of the electron-gas dynamics within impulsively-excited plasmonic gold nanoparticles.
The first experiment shows a conceptually general method for directly assessing the system temperature after lattice and electrons have thermalized.The second experiment represents a proof-of-concept of the possibility to directly measure the electronic temperature of nanosystems on the sub-picosecond time scale. More in general, this work will pave the way for direct and quantitatively accurate studies of the electronic properties of metallic nanosystems.
References
[1] E. A. Coronado et al., Nanoscale 3, 4042-4059 (2011), https://doi.org/10.1039/C1NR10788G (00:48).
[2] G. Baffou et al., Light Sci. Appl. 9, 108 (2020), https://doi.org/10.1038/s41377-020-00345-0 (01:01).
[3] G. Baffou et al., Nat. Mater. 19, 946-958 (2020), https://doi.org/10.1038/s41563-020-0740-6 (01:01).
[4] M. Ferrera et al., Phys. Rev. Mater. 3, 105201 (2019), https://doi.org/10.1103/PhysRevMaterials.3.105201 (01:01).
[5] V. K. Pustovalov, RSC Adv. 6, 81266-81289 (2016), https://doi.org/10.1039/C6RA11130K (01:08).
[6] M. L. Brongersma et al., Nat. Nanotechnol. 10, 24-34 (2015), https://doi.org/10.1038/ncomms8797 (01:08).
[7] B. Palpant in Gold Nanoparticles for Physics, Chemistry and Biology. Ch. 4, 75–102 (2012) (01:08).
[8] A. Block et al., Sci. Adv. 5, eaav8965 (2019), https://doi.org/10.1126/sciadv.aav8965 (01:47).
[9] R. G. Hobbs et al., Nano Lett. 17, 6069-6076 (2017), https://doi.org/10.1021/acs.nanolett.7b02495 (01:47).
[10] A. Lietard et al., Nat. Commun. 9, 891 (2018), https://doi.org/10.1038/s41467-018-03002-8 (01:47).
[11] B. Van de Broek et al., Small 7, 2498-2506 (2011), https://doi.org/10.1002/smll.201100089 (02:12).
[12] A. Plech et al., Nanoscale 9, 17284-17292 (2017), https://doi.org/10.1039/C7NR06125K (02:12).
[13] M. Magnozzi et al., J. Phys. Conf. Ser. 1226, 012014 (2019), https://doi.org/10.1088/1742-6596/1226/1/012014 (02:43, 06:34).
[14] L. Anghinolfi, Phys. Chem. C 115, 14036–14043 (2011), https://doi.org/10.1021/jp202230h (02:51)
[15] F. Bisio et al., ACS Nano 8, 9239-9247 (2014),https://doi.org/10.1021/nn503035b (02:51)
[16] M. Magnozzi et al., Nanoscale 11, 1140-1146 (2019), https://doi.org/10.1039/C8NR09038F (02:51).
[17] M. Ferrera et al., J. Phys. Chem. C 124, 17204-17210 (2020), https://doi.org/10.1021/acs.jpcc.0c04085 (02:51).
[18] M. Ferrera et al., ACS Photonics 7, 959-966 (2020), https://doi.org/10.1021/acsphotonics.9b01605 (03:06; 03:29; 04:03; 04:14; 04:27; 04:54; 04:57; 05:51; 09:12).
[19] I. Fratoddi et al., J. Colloid Interface Sci. 513, 10-19 (2018), https://doi.org/10.1016/j.jcis.2017.11.010 (03:26).
[20] M. Sygletou et al., Manuscript in preparation (06:32; 09:23).
[21] I. Valenti et al., J. Appl. Phys. 118, 165304 (2015), https://doi.org/10.1063/1.4934512 (06:34)
[22] R. Cucini et al., Struct. Dyn. 7, 014303 (2020), https://doi.org/10.1063/1.5131216 (06:54).
[23] L. P. Oloff et al., New J. Phys. 16, 123045 (2014), https://doi.org/10.1088/1367-2630/16/12/123045 (07:29).
[24] H. Hövel et al., Phys. Rev. B 70, 045424 (2004), https://doi.org/10.1103/PhysRevB.70.045424 (07:55).
[25] E. Minutella et al., J. Phys. Chem. Lett. 8, 4925-4929 (2017), https://doi.org/10.1021/acs.jpclett.7b02043 (08:24).
[26] M. Zavelani-Rossi et al., ACS Photonics 2, 521-529 (2015), https://doi.org/10.1021/ph5004175 (08:30).
Sound
[*] This work is licensed under the Creative Commons 0 License.
https://freesound.org/people/soramoosic/sounds/244249/?page=2#comment
Images exported from Google Earth Pro on desktop
Data providers listed in the bottom center of the view https://www.google.com/permissions/geoguidelines/attr-guide/
Figures (03:29-06:10) from reference [18] M. Ferrera et al., ACS Photonics 7, 959-966 (2020), https://doi.org/10.1021/acsphotonics.9b01605
Permitted uses by authors include presentations at conferences and seminars.
First Principles Study of Electronic and Catalytic Properties of 2D Silicate Bilayers
Mengen Wang,1,2 Anibal Boscoboinik1* and Deyu Lu1*
1 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
2 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA
This research is focused on applying first principles computation to explore new atomic level phenomena due to nano confinement effects at the surfaces and interfaces. This line of research emerges thanks to the discovery of a novel two-dimensional silica thin film, which is physisorbed on the Ru (0001) surface, creating two nano-scale confined spaces at the heterojunction. The confinement effects give rise to an array of new physical and chemical phenomena, including noble gas trapping at noncryogenic temperatures and modification of chemical reaction pathway.
References
[1] L Lichtenstein, M Heyde, HJ Freund, J. Phys. Chem. C, 116, 20426 (2012), https://pubs.acs.org/doi/10.1021/jp3062866 (0:41)
[2] S Shaikhutdinov, HJ Freund, Adv. Mater., 25, 49 (2013), https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201203426 (0:41)
3] D Löffler, JJ Uhlrich, M Baron, B Yang, X Yu, L Lichtenstein, L Heinke, C Büchner, M Heyde, S Shaikhutdinov, HJ Freund, Phys. Rev. Lett. 105, 146104, (2010), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.146104 (0:41)
[4] M Wang, JQ Zhong, J Kestell, I Waluyo, D Stacchiola, D Lu, J.A.Boscoboinik, Top. Catal. 60, 481 (2017), https://link.springer.com/article/10.1007/s11244-016-0704-x (1:11-4:05)
[5] M Wang, JQ Zhong, D Stacchiola, JA Boscoboinik, D Lu, J. Phys. Chem. C 123, 7731 (2018), https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05853 (1:11)
[6] JQ Zhong, M Wang, N Akter, J Kestell, A.M.Boscoboinik, T Kim, D Stacchiola, D Lu, J.A.Boscoboinik, Nat. Commun. 8, 16118 (2017), https://www.nature.com/articles/ncomms16118 (1:11, 4:08-6:17)
[7] JQ Zhong, M Wang, N Akter, J Kestell, T Niu, AM Boscoboinik, TJ Kim, D Stacchiola, Q Wu, D Lu, JA Boscoboinik, Adv. Funct. Mater. 29, 1806583 (2019), https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201806583 (1:11, 4:08-6:17)
[8] JQ Zhong, M Wang, N Akter, D Stacchiola, D Lu, J.A.Boscoboinik, J. Phys. Chem. C 123, 13578 (2019), https://pubs.acs.org/doi/10.1021/acs.jpcc.9b01110 (1:11)
[9] N Akter, M Wang, JQ Zhong, Z Liu, T Kim, D Lu, JA Boscoboinik, D Stacchiola, Top. Catal. 61, 419 (2018), https://link.springer.com/article/10.1007/s11244-017-0879-9 (1:11)
[10] M Wang, C Zhou, N Akter, WT Tysoe, JA Boscoboinik, D Lu, ACS Catal. 10, 6119 (2020), https://pubs.acs.org/doi/10.1021/acscatal.9b05289 (1:11, 6:18-8:47)
[11] R Włodarczyk, M Sierka, J Sauer, D Löffler, JJ Uhlrich, X Yu, B Yang, IM Groot, S Shaikhutdinov, HJ Freund, Phys. Rev. B, 85, 085403 (2012), https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.085403 (2:03)
[12] MJ Prieto, HW Klemm, F Xiong, DM Gottlob, D Menzel, T Schmidt, HJ Freund, Angew. Chem. Int. Ed. 57, 8749 (2018), https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201802000 (6:37)
Multilayer Sputtered Nb3Sn for its Application in SRF Cavities for Particle Acceleration
M.N. Sayeed, 1 G. Eremeev, 2 and H.E. Elsayed-Ali 1
1 Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
2 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
Nb3Sn is considered as a potential candidate for superconducting radio frequency (SRF) cavities for particle acceleration due to its higher critical temperature of 18.3 K and higher superheating field of 425 mT. In the present study, we have fabricated Nb 3 Sn films by multilayer sputtering.
First, we have deposited multiple layers of Nb and Sn films on Nb and sapphire substrates, then we annealed the multilayers at 950 °C for 3 h to synthesize Nb 3 Sn. We first determined the suitable annealing temperature and time, coating temperature and multilayer thickness for the fabrication. The films structure of the annealed film obtained from X-ray diffraction, the surface morphology of the films was observed by scanning electron microscope and transmission electron microscope. The superconducting properties of the films were measured in two ways- for the DC superconductivity of the films, four-point probe method was used to measure the surface resistance of the films down to cryogenic temperature, for the RF superconductivity (important to understand the film applicability in SRF cavities), the surface resistance of the film was calculated from the dissipated power induced by RF field at 7.4 GHz at the temperature range of 4-20 K. For both measurements, the film had a superconducting transition due to Nb 3 Sn film (transition temperature up to 17.93 K for DC measurement, and 17.2 K for RF measurement). Our experiment suggests that, multilayer sputtering technology can be applied to fabricate Nb3Sn inside a Nb cavity.
References
[1] M. N. Sayeed, U. Pudasaini, C. E. Reece, G. V. Eremeev, H. E. Elsayed-Ali, IOP Conf. Ser.: Mater. Sci. Eng. 756 012014 (2020), https://doi.org/10.1088/1757-899X/756/1/012014 (03:10, 03:48, 06:32).
[2] M.N. Sayeed, U. Pudasaini, C. E. Reece, G. Eremeev, H. E. Elsayed-Ali, J. Alloys Compd. 800 272-278 (2019), https://doi.org/10.1016/j.jallcom.2019.06.017 (03:10).
[3] M. N. Sayeed, C. E. Reece, P. Owen, G. V. Eremeev, H. E. Elsayed-Ali, Under Review (2020), (03:10, 05:06).
[4] M. N. Sayeed, U. Pudasaini, C. E. Reece, A. M. Valente-Feliciano, M. Burton, G. V. Eremeev, H. E. Elsayed-Ali, “Deposition of Nb3Sn Films by Multilayer Sequential Sputtering for SRF Cavity Application”, in Proc. 19th Int. Conf. RF Superconductivity (SRF'19), Dresden, Germany, Jun.-Jul.
2019, pp. 637-641. https://doi.org/10.18429/JACoW-SRF2019-TUP079 (03:10, 03:48, 06:32).
[5] M. N. Sayeed, C. E. Reece, G. V. Eremeev, H. E. Elsayed-Ali, In preparation (2020), (07:42).
Defect engineering of 2D-Transition Metal Dichalcogenides by Incorporation of Excess Metal Atoms into its Crystal Structure
P. M. Coelho, 1 HP. Komsa 2 , H. C. Diaz 1 , Y. Ma 1 , K. Lasek 1 , V. Kalappattil 1 , J. Karthikeyan 2 , MH. Phan 1 , A. V. Krasheninnikov 2,3 and M. Batzill 1
1 Department of Physics, University of South Florida, Tampa, FL 33620, USA.
2 Department of Applied Physics, Aalto University, 00076 Aalto, Finland.
3 Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
We explained the formation mechanism of mirror twin grain boundaries (MTB) on MoSe 2 and MoTe 2 MBE grown films and applied this knowledge for controlled modifications of 2D materials. We demonstrated by STM and DFT that excess Mo can easily diffuse into pristine MoSe 2 or MoTe 2 layer and cause crystal modifications into Mo-rich MTBs. DFT suggests that this mechanism for incorporation of transition metals is not limited to Mo. This enabled a second work on modification of materials properties by incorporation of V. V-interstitials caused induction of ferromagnetism in MoTe 2 by doping the material with less than 1% of concentration.
References
[1] HC Diaz, Y Ma, R Chaghi and M Batzill. Applied Physics Letters 108, 191606. (2016). https://doi.org/10.1063/1.4949559 - video: (1:05)
[2] Y Ma, S Kolekar, HC Diaz, J Aprojanz, I Miccoli, C Tegenkamp and M Batzill. ACS Nano, 11, 5, 5130-5139 (2017). https://doi.org/10.1021/acsnano.7b02172 - video: (1:05)
[3] Y Ma, HC Diaz, J Avila, C Chen, V Kalappattil, R Das, MH Phan, T Cadez, JMP Carmelo, MC Asensio, M Batzill. Nat. Commun., 8, 14231 (2017). https://doi.org/10.1038/ncomms14231 - video: (1:11)
[4] T Kosmala, HC Diaz, HP Komsa, Y Ma, AV Krasheninnikov, M Batzill, and S Agnoli. Advanced Energy Materials, 8, 1800031. (2018). https://doi.org/10.1002/aenm.201800031 - video: (1:24)
[5] PM Coelho, HP Komsa , HC Diaz, Y Ma, AV Krasheninnikov and M Batzill. ACS Nano, 12, 4, 3975–3984, (2018). https://doi.org/10.1021/acsnano.8b01580 - video: (4:55)
[6] Z Guguchia, A Kerelsky, D Edelberg, et al. Science Advances, 4, 12, eaat3672 (2018). https://doi.org/10.1126/sciadv.aat3672 - video: (5:30)
[7] J Karthikeyan, HP Komsa, M Batzill, AV Krasheninnikov. Nano Letters 19 (7), 4581-4587 (2019). https://doi.org/10.1021/acs.nanolett.9b01555 - video: (5:49)
[8] PM Coelho, HP Komsa, K Lasek, V Kalappattil, J Karthikeyan, MH Phan, AV Krasheninnikov and M Batzill1. Adv. Electron.Mater., 5, 1900044 (2019). https://doi.org/10.1002/aelm.201900044 - video: (9:40)
Adsorption, Reaction, and Diffusion of Energetic Reagents on Morphologically-Diverse Thin Films
Rebecca S. Thompson,1 Michelle R. Brann,2 and S. J. Sibener2
1 Department of Chemistry, St. Edward’s University, 3001 S Congress Ave., Austin TX, 78704, USA
2 The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E 57th St., Chicago IL, 60637, USA
This video describes a diverse set of experiments that probe the interfacial dynamics of complex molecular thin films. Topics include the oxidative destruction of chemical warfare agents, sticking of small molecules on and in extraterrestrial ices, and oxidation of an important industrial alkene.
We demonstrate many of the factors that can influence reactivity in condensed phases. Product distributions and reaction barriers often differ due to many-body interactions in the film. Even when barriers are low, contact between reactive species may be significantly hindered by low adsorption probabilities, diffusion constraints, and film morphology.
References
[1] Langlois, G. G.; Thompson, R. S.; Li, W.; Sibener, S. J. Oxidation, Destruction, and Persistence of Multilayer Dimethyl Methylphosphonate Films during Exposure to O( 3 P)
Atomic Oxygen. J. Phys. Chem. C 2016, 120 (30), 16863–16870. [2:44]
[2] Thompson, R. S.; Langlois, G. G.; Sibener, S. J. Oxidative Destruction of Multilayer Diisopropyl Methylphosphonate Films by O( 3 P) Atomic Oxygen. J. Phys. Chem. B 2018,
122 (2), 455–463. [2:44]
[3] Thompson, R. S.; Brann, M. R.; Sibener, S. J. Sticking Probability of High-Energy Methane on Crystalline, Amorphous, and Porous Amorphous Ice Films. J. Phys. Chem. C
2019, 123 (29), 17855–17863. [4:56]
[4] Brann, M. R.; Thompson, R. S.; Sibener, S. J. Reaction Kinetics and Influence of Film Morphology on the Oxidation of Propene Thin Films by O( 3 P) Atomic Oxygen. J. Phys.
Chem. C 2020, 124 (13), 7205–7215. [7:21]
Strongly Anisotropic Electronic and Optical Properties in Quasi-One-Dimensional TiS 3 and ZrS3
Simeon J. Gilbert
University of Nebraska-Lincoln
TiS 3 and ZrS 3 have a quasi-1D structure which provides superior edge termination when compared to other 2D materials. This structure results in highly anisotropic electronic and optical properties which were examined here through nanospot angle resolved photoemission spectroscopy and polarization dependent scanning photocurrent microscopy. It is shown that these materials have a preferred charge transport direction which, when combined with their pristine edges, can eliminate edge scattering effects in nanoscale electronic devices. The photocurrent production in these materials is also extremely polarization dependent enabling the creation of polarization sensitive photodetectors for visible and near infrared light.
References
[1] S. J. Gilbert, A. Lipatov, A. J. Yost, M. J. Loes, A. Sinitskii, and P. A. Dowben, Appl. Phys. Lett. 114, 101604 (2019), https://doi.org/10.1063/1.5090270, (00:34).
[2] A. Lipatov, M. J. Loes, H. Lu, J. Dai, P. Patoka, N. S. Vorobeva, D. S. Muratov, G. Ulrich, B. Kastner, A. Hoehl, G. Ulm, X. C. Zeng, E. Ruhl, A. Gruverman, P. A. Dowben, and A. Sinitskii,
ACS Nano 12, 12713 (2018), https://doi.org/10.1021/acsnano.8b07703, (00:58).
[3] E. W. Plummer and W. Eberhardt, Adv. Chem. https://doi.org/10.1002/9780470142691.ch8, (01:38, 05:51).
[4] H. Yi, S. J. Gilbert, A. Lipatov, A. Sinitskii, J. Avila, J. Abourahma, T. Komesu, M. C. Asensio, and P. A. Dowben, J. Phys. Condens. Matter 32, 29LT01 (2020), https://doi.org/10.1088/1361-648X/ab832c, (01:51, 02:13, 03:17).
[5] J. O. Island, M. Buscema, M. Barawi, J. M. Clamagirand, J. R. Ares, C. Sánchez, I. J. Ferrer, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Adv. Opt. Mater. 2, 641 (2014), https://doi.org/10.1002/adom.201400043, (02:04).
[6] I. J. Ferrer, M. D. Maciá, V. Carcelén, J. R. Ares, and C. Sánchez, Energy Procedia 22, 48 (2011), https://doi.org/10.1016/j.egypro.2012.05.219, (02:04).
[7] I. J. Ferrer, J. R. Ares, J. M. Clamagirand, M. Barawi, and C. Sánchez, Thin Solid Films 535, 398 (2013), https://doi.org/10.1016/j.tsf.2012.10.033, (02:04).
[8] A. J. Molina-Mendoza, M. Barawi, R. Biele, E. Flores, J. R. Ares, C. Sánchez, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, I. J. Ferrer, and A. Castellanos-Gomez, Adv. Electron. Mater. 1, 1500126 (2015), https://doi.org/10.1002/aelm.201500126, (02:04).
[9] A. Pant, E. Torun, B. Chen, S. Bhat, X. Fan, K. Wu, D. P. Wright, F. M. Peeters, E. Soignard, H. Sahin, and S. Tongay, Nanoscale 8, 16259 (2016), https://doi.org/10.1039/c6nr05238j, (02:04, 07:18).
[10] S. Kurita, J. L. Staehli, M. Guzzi, and F. Levy, Physica B 105, 169 (1981), https://doi.org/10.1016/0378-4363(81)90239-4, (02:04).
[11] G. Perluzzo, S. Jandl, and P. E. Girard, Can. J. Phys. 58, 143 (1980), Phys. 49, 533 (1982), https://doi.org/10.1139/p80-023, (02:04).
[12] E. Flores, J. R. Ares, I. J. Ferrer, and C. Sánchez, Phys. Status Solidi - Rapid Res. Lett. 10, 802 (2016), https://doi.org/10.1002/pssr.201600169, (02:04).
[13] X. Blase, C. Adessi, B. Biel, A. Lopez-Bezanilla, M. V. Fernandez-Serra, E. R. Margine, F. Triozon, and S. Roche, Phys. Status Solidi Basic Res. 247, 2962 (2010), https://doi.org/10.1002/pssb.201000135, (02:15).
[14] V. K. Dugaev and M. I. Katsnelson, Phys. https://doi.org/10.1103/PhysRevB.88.235432, (02:15).
[14] E. R. Mucciolo and C. H. Lewenkopf, J. Phys. Condens. Matter 22, 273201 (2010), https://doi.org/10.1088/0953-8984/22/27/273201, (02:15).
[16] M. Wimmer, I. Adagideli, S. Berber, D. Tom?anek, and K. Richter, Phys. Rev. Lett. 100, 177207 (2008), https://doi.org/10.1103/PhysRevLett.100.177207, (02:15).
[17] J. Wurm, K. Richter, and I. Adagideli, Phys. https://doi.org/10.1103/PhysRevB.84.075468, (02:15).
[18] O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010), https://doi.org/10.1088/0034-4885/73/5/056501, (02:15).
[19] M. Y. Han, J. C. Brant, and P. Kim, Phys. Rev. Lett. 104, 056801 (2010), https://doi.org/10.1103/PhysRevLett.104.056801, (02:15).
[20] S. A. Jensen, R. Ulbricht, A. Narita, X. Feng, K. M€ullen, T. Hertel, D. Turchinovich, and M. Bonn, Nano Lett. 13, 5925 (2013), https://doi.org/10.1021/nl402978s, (02:15).
[21] Y. J. Shi, J. Lan, E. J. Ye, W. Q. Sui, and X. Zhao, Eur. Phys. J. B 87, 251 (2014), https://doi.org/10.1140/epjb/e2014-50321-0, (02:15).
[22] Y. Yang and R. Murali, IEEE Electron https://doi.org/10.1109/LED.2009.2039915, (02:15).
[23] H. Yi, T. Komesu, S. Gilbert, G. Hao, A. J. Yost, A. Lipatov, A. Sinitskii, J. Avila, C. Chen, M. C. Asensio, and P. A. Dowben, Appl. Phys. Lett. 112, 052102 (2018), https://doi.org/10.1063/1.5020054, (03:17).
[24] A. J. Molina-Mendoza, J. O. Island, W. S. Paz, J. M. Clamagirand, J. R. Ares, E. Flores, F. Leardini, C. Sánchez, N. Agraït, G. Rubio-Bollinger, H. S. J. van der Zant, I. J. Ferrer, J. J. Palacios, and G. Castellanos-Gomez, Adv. Funct. Mater. 27, 1605647 (2017), https://doi.org/10.1002/adfm.201605647, (03:26).
[25] T. A. Empante, A. Martinez, M. Wurch, Y. Zhu, A. K. Geremew, K. Yamaguchi, M. Isarraraz, S. Rumyantsev, E. J. Reed, A. A. Balandin, and L. Bartels, Nano Lett. 19, 4355 (2019),
https://doi.org/10.1021/acs.nanolett.9b00958, (03:26, 03:32).
[26] S. J. Gilbert, H. Yi, J-S Chen, A.J. Yost, A. Dhingra, J. Abourahma, A. Lipatov, J. Avila, T. Komesu, A. Sinitskii, M. C. Asensio, and P. A. Dowben, ACS Appl. Mater. Interfaces 12, 40525 (2020), https://doi.org/10.1021/acsami.0c11892, (03:55, 04:22, 05:17, 06:39, 06:49, 07:32).
[27] S. Liu, W. Xiao, M. Zhong, L. Pan, X. Wang, H-X Deng, J. Liu, J. Li, and Z. Wei, Nanotechnology 29, 184002 (2018), https://doi.org/10.1088/1361-6528/aaafa2, (04:44, 05:17, 07:18, 08:51).
[28] J. O. Island, R. Biele, M. Barawi, J. M. Clamagirand, J. R. Ares, C. Sánchez, H. S. J. Van Der Zant, I. J. Ferrer, R. D’Agosta, and A. Castellanos-Gomez, Sci. Rep. 6, 22214 (2016), https://doi.org/10.1038/srep22214, (04:44).
[29] W. Kong, C. Bacaksiz, B. Chen, K. Wu, M. Blei, X. Fan, Y. Shen, H. Sahin, D. Wright, D. S. Narang, and S. Tongay, Nanoscale 9, 4175 (2017), https://doi.org/10.1039/c7nr00711f, (04:44).
[30] X. Wang, K. Wu, M. Blei, Y. Wang L. Pan, K. Zhao, C. Shan, M. Lei, Y. Cui, B. Chen, D. Wright, W. Hu, S. Tongay, and Z. Wei, Adv. Electron. Mater. 5, 1900419 (2019), https://doi.org/10.1002/aelm.201900419, (04:44).
[31] D. Wu, J. Guo, J. Du, C. Xia, L. Zeng, Y. Tian, Z. Shi, Y. Tian, X. J. Li, Y. H. Tsang, and J. Jie, ACS Nano 13, 9907 (2019), https://doi.org/10.1021/acsnano.9b03994, (05:04).
[32] P. J. Feibelman, and D. E. Eastman, https://doi.org/10.1103/PhysRevB.10.4932, (05:51).
[33] G. D. Mahan, Phys. Rev. B 2, 4334 (1970), https://doi.org/10.1103/PhysRevB.2.4334, (05:51).
[34] I. Adawi, Phys. Rev. 134, A788 (1964), https://doi.org/10.1103/PhysRev.134.A788, (05:51).
[35] W. L. Schaich, and N. W. Ashcroft, https://doi.org/10.1103/PhysRevB.3.2452, (05:51).
[36] M. C. Asensio, J. Avila, L. Roca, A. Tejeda, G. D. Gu, M. Lindroos, R. S. Markiewicz, and A. Bansil, Physical Review B 67, 014519 (2003), https://doi.org/10.1103/PhysRevB.67.014519, (05:51).
[37] P.A. Dowben, J. Choi, E. Morikawa, and B. Xu, The Band Structure and Orientation of Molecular Adsorbates on Surfaces by Angle-Resolved Electron Spectroscopies, in: Handbook of Thin Films, edited by H.S. Nalwa, Volume 2: Characterization and Spectroscopy of Thin Films, Chapter 2 (Academic Press) pp. 61-114 (2002), https://doi.org/10.1016/B978-012512908-4/50021-7, (05:51).
[38] J. A. Silva-Guillen, E. Canadell, P. Ordejon, F. Guinea, and R. Roldan, 2D Mater. 4, 025085 (2017), https://doi.org/10.1088/2053-1583/aa6b92, (06:17, 07:18, 08:12).
[39] M. Li, J. Dai, and X. C. Zeng Nanoscale 7, 15385 (2015), https://doi.org/10.1039/C5NR04505C, (06:17, 07:18, 08:12).
[40] Y. Jin, X. Li, and J. Yang, Phys. https://doi.org/10.1039/C5CP02813B, (07:18).
Phys.
Phys.
Chem.
Rev.
Rev.
Chem.
B
B
Phys.
10,
3,
17,
4932
2452
18665
(1974),
(1971),
(2015),
Implantable Aptamer Field-Effect Transistor Neuroprobes: Eavesdropping on Chemical Signaling
Chuanzhen Zhao,1 Paul S. Weiss,1,2 and Anne M. Andrews1,3
1 Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095
2 Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
3 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
Chemical communication between neurons plays central roles in information processing in the brain, yet technologies for neurochemical recordings are limited, and for some neurotransmitters, nonexistent. In this talk, I talked about developing transformative biosensors towards in vivo neurotransmitter monitoring. We designed and fabricated implantable In2O3 field-effect transistor biosensor neurochemical probes. We performed ex vivo and in vivo experiments with implanted neural probes to monitor neurotransmitters, e.g., serotonin, in living, conscious animals. The technologies we are developing will advance our understanding of healthy brain function in relation to complex behavior, as well as corresponding dysfunction in psychiatric and neurodegenerative disorders.
References
Alivisatos et al., ACS Nano 7, 1850 (2013) https://doi.org/10.1021/nn4012847 (00:24)
Insel, Landis, & Collins, Science 340, 687 (2013) https://doi.org/10.1126/science.1239276 (00:24)
Andrews, ACS Chem. Neurosci. 4, 645 (2013) https://doi.org/10.1021/cn4001044 (00:24)
Nakatsuka, Yang, Abendroth, Cheung, Xu, Yang, Zhao, Zhu, Rim, Yang, Weiss, Stojanovic, & Andrews, Science 362, 319 (2018) https://doi.org/10.1126/science.aao6750 (03:14)
Kozai, Jaquins-Gerstl, Vazquez, Michael, & Cui, ACS Chem. Neuro. 6, 48 (2015) https://doi.org/10.1021/cn500256e (05:36, 07:02)
Nguyen, Park, Skousen, Hess-Dunning, Tyler, Rowan, Weder, & Capadona, J. Neural Eng. 11,056014 (2014) https://doi.org/10.1088/1741-2560/11/5/056014 (05:36, 07:02)
Lei, Guan, Liu, Lin, Pfattner, Shaw, McGuire, Huang, Shao, Cheung, Tok, & Bao, Proc. Natl. Acad. Sci. U.S.A. 114, 5107 (2017) https://doi.org/10.1073/pnas.1701478114 (05:36, 07:02)
Liu, Zhao, Chen, Liu, Zhao, Wu, Li, Weiss, Andrews, & Zhou, iScience 23, 101469 (2020) https://doi.org/10.1016/j.isci. 2020.101469 (06:07)