Publications
Publications
Google Scholar - Seung hwan Lee [Link]
“A Fully Integrated Reprogrammable Memristor-CMOS System for Neuromorphic Computing”, Nature Electronics 2, 290–299 (2019)
Cover Article of the July 2019 issue
Highlighted in News & Comment and Collections of Nature Electronics
Spotlighted in University of Michigan main page
IEEE spectrum news
[20] Tae Uk Nam, Ngoc Thanh Phuong Vo, Min Woo Jeong, Kyu Ho Jung, Seung Hwan Lee, Tae Il Lee, and Jin Young Oh. "Intrinsically Stretchable Floating Gate Memory Transistors for Data Storage of Electronic Skin Devices", ACS nano 18 (22) 14558–14568 (2024)
[19] Justin M Correll, Seung Hwan Lee, Fuxi Cai, Vishishtha Bothra, Yong Lim, Zhengya Zhang, Wei D Lu, Michael P Flynn. “Analog Computation with RRAM and Supporting Circuits”, Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication
(Book, Springer) (2022)
[18] Minhyung Ahn, Yongmo Park, Seung Hwan Lee, Sieun Chae, Jihang Lee, John T Heron, Emmanouil Kioupakis, Wei D Lu, Jamie D Phillips. “Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High‐Entropy Oxides”, Advanced Electronic Materials 7 (5), 2001258 (2021)
[17] Xinxin Wang, Qiwen Wang, Fan-Hsuan Meng, Seung Hwan Lee, and Wei D Lu. “Deep neural network mapping and performance analysis on tiled rram architecture”, 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) 141-144 (2020)
[16] Justin M. Correll, Vishishtha Bothra, Fuxi Cai, Yong Lim, Seung Hwan Lee, Seungjong Lee, Wei D. Lu, Zhengya Zhang, and Michael P. Flynn. “A Fully-Integrated Reprogrammable CMOS-RRAM Compute-In-Memory Coprocessor for Neuromorphic Applications”, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 6, 36-44 (2020)
[15] Seung Hwan Lee, John Moon, YeonJoo Jeong, Xinyi Li, Huqiang Wu, and Wei D. Lu. “A quantitative, dynamic memristor/RRAM model”, ACS Applied Electronic Materials 2 (3), 701-709 (2020)
[14] Seung Hwan Lee, Xiaojian Zhu, and Wei D. Lu. “Nanoscale resistive switching devices for memory and computing applications”, Nano Research 13 (5), 1228–1243 (2020)
[13] John Moon, Wen Ma, Jong Hoon Shin, Fuxi Cai, Chao Du, Seung Hwan Lee, and Wei D. Lu. “Towards Temporal Data Classification and Forecasting Using a Memristor-Based Reservoir Computing System”, Nature Electronics 2, 480–487 (2019)
[12] Fuxi Cai *, Justin M. Correll *, Seung Hwan Lee*, Yong Lim, Vishishtha Bothra, Zhengya Zhang, Michael P. Flynn, and Wei D. Lu. “A Fully Integrated Reprogrammable Memristor-CMOS System for Neuromorphic Computing”, Nature Electronics 2, 290–299 (2019)
[11] Qiwen Wang, Xinxin Wang, Seung Hwan Lee, Fan-Hsuan Meng, and Wei D. Lu. “A Deep Neural Network Accelerator Based on Tiled RRAM Architecture”, 2019 IEEE international electron devices meeting (IEDM), 14.4. 1-14.4. 4 (2019)
[10] Xiaojian Zhu, Seung Hwan Lee, and Wei D. Lu. “Nanoionic resistive switching devices”, Advanced Electronic Materials 5 (9), 1900184 (2019)
[9] Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, and Wei D Lu. “Reservoir computing using dynamic memristors for temporal information processing”, Nature communications 8 (1), 2204 (2017)
[8] Yan Jun Li, Seung Hwan Lee, Yukinori Kinoshita, Zong Min Ma, Huanfei Wen, Hikaru Nomura, Yoshitaka Naitoh, and Yasuhiro Sugawara, “Growth models of coexisting p (2×1) and c (6×2) phases on an oxygen-terminated Cu (110) surface studied by noncontact atomic force microscopy at 78 K”, Nanotechnology 27 (20), 205702 (2016)
[7] J. Bamidele, S.H. Lee, Y. Kinoshita, R. Turanský, Y. Naitoh, Y.J. Li, Y. Sugawara, I. Štich, and L. Kantorovich, “Vertical atomic manipulation with dynamic atomic-force microscopy without tip change via a multi-step mechanism”, Nature Communications 5, 4476 (2014)
[6] J. Bamidele, Y. Kinoshita, R. Turanský, S. H. Lee, Y. Naitoh, Y. J. Li, Y. Sugawara, I. Štich, and L. Kantorovich, “Image formation and contrast inversion in noncontact atomic force microscopy imaging of oxidized Cu (110) surfaces”, Phys. Rev. B 90, 035410 (2014)
[5] J. Bamidele, Y. Kinoshita, R. Turanský, S. H. Lee, Y. Naitoh, Y. J. Li, Y. Sugawara, I. Štich, and L. Kantorovich, “Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface”, Phys. Rev. B 86, 155422 (2012)
[4] Hyungdong Lee, Kim S.G., Cho, K., Hwang, H., Choi H., Lee, J., Lee, S.H., et al.; “Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications”, 2012 Digest of Technical Papers Symposium on VLSI. pp. 151-152 (2012)
[3] Jaeyun Yi, Hyejung Choi, Seunghwan Lee, et al.; “Highly reliable and fast nonvolatile hybrid switching ReRAM memory using thin Al2O3 demonstrated at 54nm memory array”, 2011 Digest of Technical Papers Symposium on VLSI. pp. 48-49 (2011)
[2] Sang-Min Hwang, Banna S., Tang C., Bhardwaj S., Gupta M., Thurgate T., Kim D., Jungtae Kwon, Joong-Sik Kim, Seung-hwan Lee, et al.; “Offset buried metal gate vertical floating body memory technology with excellent retention time for DRAM application”, 2011 Digest of Technical Papers Symposium on VLSI. pp. 172-173 (2011)
[1] Joong-Sik Kim, Chung, Sung-Woong, Tae-Su Jang, Seung-hwan Lee, et al.; “Vertical double gate Z-RAM technology with remarkable low voltage operation for DRAM application”, 2010 Digest of Technical Papers Symposium on VLSI. pp. 163-164 (2010)
Patent
US (Granted)
[1] Electronic device (US10056138)
[2] Electronic device and method for reading data stored in resistive memory cell (US9984748 B1)
[3] Electronic device including a semiconductor memory unit that includes cell mats of a plurality of planes vertically stacked (US9613901)
[4] Electronic device including a semiconductor memory unit that includes cell mats of a plurality of planes vertically stacked (US9377955)
[5] Variable resistance memory device and method for fabricating the same (US8933427 B2)
[6] Variable resistance memory device (US8884264 B2)
[7] Semiconductor device and method for forming the same (US8723251 B2)
[8] Semiconductor device and method for forming the same (US8318558 B2)
[9] Defect detection using thermal laser stimulation and atomic force microscopy (US17/896,098)
South Korea and China (Granted)
[1] 전자장치 (KR102161603)
[2] 가변 저항 메모리 장치 (KR101934013)
[3] 가변 저항 메모리 장치 및 그 제조 방법 (KR101917294)
[4] 반도체 소자 및 그 형성 방법 (KR101139980)
[5] 电子装置 (CN104916311)
[6] 可变电阻存储器件 (CN103367387)