使用STL格式檔案列印3D模型前需要先進行「流形錯誤」檢查,這一步通常稱為「修正」。對於採用3D掃描獲得的模型來說,STL檔案「修正」尤其重要,因為這樣的模型通常會有大量流形錯誤。常見的流形錯誤包括,各表面沒有相互連線,或是模型上存在空隙等。netfabb、Meshmixer,或是Cura和Slic3r都是常見的修正軟體。
完成修正後,用戶可以用一種名為「slicer」(意為「切片機」)的軟體功能將STL檔案代表的模型轉換成一系列薄層,同時生成G代碼檔案,其中包括針對某種3D列印機(FDM印表機)的客製指令。接下來,用戶可以用3D列印用戶端軟體列印G代碼檔案,這種用戶端軟體可以利用載入的G代碼指示3D列印機完成列印過程)。值得注意的是,實際應用中的3D列印用戶端軟體通常會包含「切片機」軟體功能。有多種開源切片機程式可供選擇,如Skeinforge、Slic3r和Cura,不開放原始碼的切片機程式則有Simplify3D和KISSlicer。3D列印用戶端軟體則有Repetier-Host、ReplicatorG和Printrun/Pronterface。
需要注意的是還有一款用到3D列印的人們經常使用的軟體叫做G代碼檢視器(Gcode viewer)。這個軟體可以檢查印表機噴嘴的行進路線。通過檢查這個,用戶可以自行決定修改GCode列印模型的不同方式(例如以不同姿勢,如站立或平躺)以節省塑料(根據姿勢和噴嘴路線,會用到更多或更少的支撐材料)。G代碼檢視器的例子有Gcode Viewer for Blender和Pleasant3D。
3D列印機根據G代碼從不同的橫截面將液體,粉末,紙張或板材等材料一層層組合在一起。這些層次與電腦輔助設計模型中的虛擬層次都是相對應的。這些真實的材料層或人工或自動地拼接起來形成3D列印成品。3D列印技術的主要優勢在於,它幾乎可以列印所有形狀的物品。
列印解析度指的是層次的厚度以及長和寬解析度,單位為點/英寸(dpi)或微米(µm)。層厚一般為100微米(250點/英寸),但有些印表機,例如OBjet Connex 系列和Project 3D系統,可以列印層厚16微米(1600點/英寸)的物體,橫縱解析度可以與雷射印表機媲美,3D圓點直徑大約為50到100微米(510到250點/英寸)。
現代制模技術根據工藝,模型大小和模型複雜程度的不同,耗費的時間從幾個小時到幾天不等。增量製造系統則可以將一般生產時間縮短到數小時,當然具體生產時間仍然根據印表機型號,模型大小和同時列印模型數量的不同會有較大變化。
傳統的諸如注塑成型等工藝在批次生產聚合物上成本較低,但增量製造速度更快,更靈活,在生產少量物體時較划算。擁有了3D列印機的幫助,設計者和概念開發團隊就可以利用這個只有桌面大小的印表機進行零部件和概念模型的生產了。