Grade 5 Released Science MCAS Questions
http://mcas.pearsonsupport.com/released-items/science/
Students are naturally curious and motivated to know more about the world in which they live. Asking questions about everyday phenomena, issues, and how things work can provide rich science learning opportunities for all students. An STE curriculum that is carefully designed around engaging, relevant, real-world interdisciplinary questions increases student motivation, intellectual engagement, and sense making. Learning theory research shows that expert knowledge is developed more effectively through these interdisciplinary real-world connections than through isolated content or practice (e.g., NRC, 2012; Schwartz et al., 2009). Real applications of science—and rapid developments in STE fields such as biotechnology, clean energy, medicine, forensics, agriculture, or robotics—can promote student interest and demonstrate how the core ideas in science are applied in real-world contexts.
An integrated STE curriculum that reflects what we know about the learning of science and how mastery develops over time promotes deeper learning in science (e.g., Wilson et al., 2010). Each domain of science has its particular approach and area of focus. However, students need to understand that much of the scientific and technological work done in the world draws on multiple disciplines.
Oceanographers, for instance, use their knowledge of physics, chemistry, biology, earth science, and technology to chart the course of ocean currents. And when a community initiates a public works project, such as removing a combined sewer overflow system, there are various aspects of physics, biology, technology, and chemistry to consider. Connecting the domains of STE with one another and with mathematical study, and to applications in the world, helps students apply, transfer, and adapt their learning to new situations and problems.
Mathematics is an essential tool for scientists and engineers because it specifies in precise and abstract (general) terms many attributes of natural phenomena and human-made systems. Mathematics facilitates precise analysis and prediction through formulae that represent the nature of relationships among components of a system (e.g., F = ma). Mathematics can also be used to quantify dimensions and scale, allowing investigations of questions such as: How small is a bacterium? How large is a star? How dense is lead? How fast is sound? How hard is a diamond? How sturdy is the bridge? How safe is the plane? With such analyses, all kinds of intellectual and practical questions can be posed, predicted, and solved.
A school district or educator can choose from many instructional models and curricular design approaches to effectively engage students in STE learning. One option (among these many) is Project- Based Learning (PBL), in which students go through an extended process of inquiry or design in response to an authentic question, problem, or challenge. They draw from many disciplines when understanding and addressing a complex problem. PBL is centered on student and teacher collaboration and application of academic knowledge and skills. While engaged in PBL, students are engaged in science and engineering practices, as well as cross-disciplinary concepts; students engage in reading and writing informational text and mathematics depending on the driving question of the project. A PBL approach allows for some student choice and voice that promotes motivation and educational equity. PBL includes a process of revision and reflection that requires students to learn how to communicate and receive instructive feedback and to think about their own cognition and understanding.