The high school biology standards build from middle school and allow grade 9 or 10 students to explain additional and more complex phenomena related to genetics, the functioning of organisms, and interrelationships between organisms, populations, and the environment. The standards expect students to apply a variety of science and engineering practices to four core ideas of biology:
- From molecules to organisms: structures and processes standards help students formulate an answer to the question, “How do organisms live and grow?” Students demonstrate that they can use investigations and gather evidence to support explanations of cell function and reproduction. They understand the role of proteins as essential to the work of the cell and living systems. Students can use models to explain photosynthesis, respiration, and the cycling of matter and flow of energy in living organisms. The cellular processes can be used as a model for understanding the hierarchical organization of organisms.
- Standards focused on ecosystems: interactions, energy, and dynamics help students formulate an answer to the question, “How and why do organisms interact with their environment, and what are the effects of these interactions?” Students can use mathematical reasoning to demonstrate understanding of fundamental concepts of carrying capacity, factors affecting biodiversity and populations, and the cycling of matter and flow of energy among organisms in an ecosystem. These models support students’ conceptual understanding of systems and their ability to develop design solutions to reduce the impact of human activities on the environment and maintain biodiversity.
- Heredity: inheritance and variation of traits standards help students formulate answers to the questions: “How are characteristics of one generation passed to the next? How can individuals of the same species and even siblings have different characteristics?” Students are able to ask questions, make and defend a claim, and use concepts of probability to explain the genetic variation in a population. Students demonstrate understanding of why individuals of the same species vary in how they look and function. Students can explain the mechanisms of genetic inheritance and describe the environmental and genetic causes of gene mutation and the alteration of gene expression.
- Standards for biological evolution: unity and diversity help students formulate an answer to the question, “What evidence shows that different species are related?” Students construct explanations for the processes of natural selection and evolution and communicate how multiple lines of evidence support these explanations. Students can evaluate evidence of the conditions that may result in new species and understand the role of genetic variation in natural selection. Additionally, students can apply concepts of probability to explain trends in populations as those trends relate to advantageous heritable traits in a specific environment.
The high school biology standards place particular emphasis on science and engineering practices of developing and using models; constructing explanations; engaging in argumentation from evidence; and obtaining, evaluating, and communicating information. Students are expected to use multiple types of models, including mathematical models, to make predictions and develop explanations, analyze and identify flaws in the model, and communicate ideas that accurately represent or simulate the biological system. Students are asked to construct and revise explanations and claims based on valid and reliable evidence and apply scientific reasoning to evaluate complex real-world problems such as the effects of human activity on biodiversity and ecosystem health. Students must be able to find and interpret scientific literature to compare, integrate, and evaluate sources and communicate phenomena related to genetics, the functioning of organisms, and interrelationships between organisms, populations, and the environment. The application of these practices across the core ideas gives students a rich grounding in biology