This page contains miscellaneous lecture videos recorded prior to 2020.
The html source for this outline can be downloaded by following the links below (you may need to rename the file to ".htm" to get it to work on your computer):
All videos prior to 2020 (74:27:52)
PHYC 4A Lectures (17:04:28)
Units and dimensional analysis (1:18:24)
Vectors (5:07:51)
Vectors vs. scalars (definitions and examples) (14:42)
m4v / mp4 / page-1 / page-2 / page-3
Definition and interpretation of vector addition (21:16)
m4v / mp4 / page-1 / page-2 / page-3
Definition and interpretation of vector subtraction (10:56)
m4v / mp4 / page-1 / page-2
Vector components (2D and 3D) (15:11)
m4v / mp4 / page-1 / page-2
Conversion between magnitude+direction and components in 2D (24:35)
m4v / mp4 / page-1 / page-2
Adding and subtracting vectors using the component method (30:09)
m4v / mp4 / page-1 / page-2 / page-3
Multiplying (and dividing) a vector by a scalar (4:55)
m4v / mp4 / page-1
The dot product: definition and basic properties (23:17)
m4v / mp4 / page-1 / page-2 / page-3
The cross product: definition and basic properties (26:03)
m4v / mp4 / page-1 / page-2 / page-3
Geometric tricks using dot and cross products (22:10)
m4v / mp4 / page-1 / page-2 / page-3
Triple product identities (35:55)
m4v / mp4 / page-1 / page-2 / page-3
Polar coordinates: an alternative way to represent direction in 2D (18:59)
m4v / mp4 / page-1 / page-2 / page-3
Cylindrical and spherical coordinates: representing direction in 3D (28:41)
m4v / mp4 / page-1 / page-2 / page-3
More on unit vectors (31:01)
m4v / mp4 / page-1 / page-2 / page-3
The velocity/acceleration relationship (1:50:36)
Description of the velocity/acceleration relationship (24:38)
m4v / mp4 / page-1 / page-2
Geometric justification of the velocity/acceleration relationship (15:17)
m4v / mp4 / page-1 / page-2
Parametric description of a (curved) path (20:20)
m4v / mp4 / page-1 / page-2 / page-3
The (unit) tangent vector (18:54)
m4v / mp4 / page-1 / page-2 / page-3
The curvature vector (19:01)
m4v / mp4 / page-1 / page-2 / page-3
Mathematical derivation of the velocity/acceleration relationship (12:26)
m4v / mp4 / page-1 / page-2
Inertial and non-inertial reference frames (1:34:55)
Newton's second law for non-inertial reference frames; the inertial force (15:55)
m4v / mp4 / page-1 / page-2
Real world examples of the inertial force (23:15)
m4v / mp4 / page-1 / page-2
Problem 1: range of a cannon inside an accelerating elevator (17:04)
m4v / mp4 / page-1 / page-2 / page-3
Problem 2: block hanging from the roof of a car travelling in uniform circular motion (13:25)
m4v / mp4 / page-1 / page-2
Problem 3: car travelling around a banked curve with friction (25:17)
m4v / mp4 / page-1 / page-2 / page-3
Systems with one degree of freedom (7:12:41)
Definition and examples (23:39)
m4v / mp4 / page-1 / page-2 / page-3
Generalized position, velocity, and acceleration (14:34)
m4v / mp4 / page-1 / page-2
Relating generalized quantities to the motion of various parts of the system (25:24)
m4v / mp4 / page-1 / page-2 / page-3
Derivation of Newton's 2nd Law (1-D translation) from the Work-Energy Theorem (11:23)
m4v / mp4 / page-1 / page-2
Generalization of Newton's 2nd Law --- application to translation and rotation (26:42)
m4v / mp4 / page-1 / page-2 / page-3
Example: Two masses connected by a rope over a pulley (32:38)
m4v / mp4 / page-1 / page-2 / page-3
Example: Rolling object on an incline (24:07)
m4v / mp4 / page-1 / page-2
Example: Two pulley system (mechanical advantage) (30:27)
m4v / mp4 / page-1 / page-2
Example: Mechanical lever (14:09)
m4v / mp4 / page-1 / page-2
Example: Gear system (common rotation) (18:16)
m4v / mp4 / page-1 / page-2
Example: Gear system (common outer translational speed) (17:34)
m4v / mp4 / page-1 / page-2
Example: Bicycle (36:17)
m4v / mp4 / page-1 / page-2 / page-3
Some general notes on dynamics (21:48)
m4v / mp4 / page-1 / page-2 / page-3
Which forces can be ignored (43:01)
m4v / mp4 / page-1 / page-2 / page-3
Summary of simple spring-mass system (14:17)
m4v / mp4 / page-1 / page-2
Generalized harmonic oscillations (9:59)
m4v / mp4 / page-1 / page-2
Example: Spring-mass system with a massive spring (17:57)
m4v / mp4 / page-1 / page-2
Example: Spring attached to a rotating board (9:12)
m4v / mp4 / page-1
Example: Fluid oscillations in a U-tube (11:05)
m4v / mp4 / page-1
Example: Spring-mass oscillations involving the two-pulley system (mechanical advantage) (9:40)
m4v / mp4 / page-1 / page-2
Epilog: Systems with more than one degree of freedom (12:47)
m4v / mp4 / page-1 / page-2 / page-3
PHYC 4AL Lectures (15:44:42)
Calipers (20:54)
Error Analysis (15:23:49)
Basic Uncertainty Analysis (6:58:13)
Measurement uncertainties (29:29)
m4v / mp4 / page-1 / page-2 / page-3 / page-4
Rounding and significant figures review (12:26)
m4v / mp4 / page-1 / page-2
Significant figures rules for basic operations (11:22)
m4v / mp4 / page-1 / page-2
Uncertainty rules for addition/subtraction (11:52)
m4v / mp4 / page-1 / page-2 / page-3
Uncertainty rules for multiplication/division (19:26)
m4v / mp4 / page-1 / page-2 / page-3
Correct rounding of best value and uncertainty (22:46)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Uncertainties for extended calculations (21:56)
m4v / mp4 / page-1 / page-2 / page-3
The discrepancy test (25:58)
m4v / mp4 / page-1 / page-2 / comments
Interval rule (single variable) (25:19)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Rectangle rule (more than one variable) (20:28)
m4v / mp4 / page-1 / page-2 / page-3
Derivative rule (27:57)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Quadrature rules (18:49)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Deriving quadrature from the ellipse rule (23:56)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Average and standard deviation (27:39)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Hand drawn graphs (36:50)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Linear regression 1 (no uncertainties) (21:41)
m4v / mp4 / page-1 / page-2
Linear regression 2 (y uncertainties) (21:49)
m4v / mp4 / page-1 / page-2 / comments
Linear regression 3 (x and y uncertainties) (23:36)
m4v / mp4 / page-1 / page-2 / page-3
Random Variables and Probability Theory (5:09:59)
Discrete random variables (22:30)
m4v / mp4 / page-1 / page-2 / comments
Expectation values (19:38)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Exponential and Gaussian integrals (22:14)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Continuous random variables (33:12)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Expectation values for continuous random variables (15:50)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Variance and standard deviation (22:33)
m4v / mp4 / page-1 / page-2 / page-3
Connection between two definitions of standard deviation (15:28)
m4v / mp4 / page-1 / page-2
Multiple discrete random variables (31:00)
m4v / mp4 / page-1 / page-2 / page-3
Multiple continuous random variables (34:57)
m4v / mp4 / page-1 / page-2 / page-3 / comments
More than two random variables (15:45)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Expectation values with multiple random variables (28:10)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Covariance and correlation (26:37)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Geometric properties of covariance and correlation (22:04)
m4v / mp4 / page-1 / page-2 / page-3
Advanced Error Analysis (3:15:38)
Measurements as random variables (39:10)
m4v / mp4 / page-1 / page-2 / page-3 / page-4 / comments
First-order propagation of error (30:13)
m4v / mp4 / page-1 / page-2 / page-3
Representing errors using the 'component method' (33:08)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Additional examples of error propagation (22:05)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Higher order terms in errors 1 (32:28)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Linear regression 4 (slope/intercept correlation) (28:49)
m4v / mp4 / page-1 / page-2 / page-3 / comments
PHYC 4BL Lectures (4:41:46)
Introduction to circuits (3:02:44)
Coulomb's Law, conductors and insulators, and elementary charges (14:43)
m4v / mp4 / page-1 / page-2
Circuits: definition of current (25:38)
m4v / mp4 / page-1 / page-2
Circuits: definition of voltage (17:01)
m4v / mp4 / page-1 / page-2
Circuits: definition of resistance (20:28)
m4v / mp4 / page-1 / page-2 / page-3
Placement of meters in circuits (22:52)
m4v / mp4 / page-1 / page-2 / page-3
Equipment demonstration: circuit box, power supply, meters (26:54)
m4v / mp4
Kirchoff's loop rule: series resistors (19:24)
m4v / mp4 / page-1 / page-2
Kirchoff's junction rule: parallel resistors (17:16)
m4v / mp4 / page-1 / page-2
The semiconductor diode (1:39:02)
At a level appropriate for PHYC 4BL... (53:07)
Further discussion at a level appropriate for PHYC 4D... (45:56)
Electronic wave functions for one atom, two atoms, and a lattice array of atoms (12:10)
m4v / mp4 / page-1 / page-2
Donor and acceptor states for n-type and p-type semiconductors (9:00)
m4v / mp4 / page-1
pn-junction explained in terms of electronic energy level diagram (17:47)
m4v / mp4 / page-1
Correcting an error in previous video (6:59)
m4v / mp4 / page-1 / page-2
PHYC 4C Lectures (12:18:42)
Mechanical waves (7:53:26)
Introduction to mechanical waves (20:31)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Waves in a string (1:09:39)
Sound waves (1-D) (1:00:51)
Sound waves (1-D, account for area) (1:13:02)
Sound waves (3-D) (3:00:49)
Local stress/strain relationship (23:49)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Deriving the wave equation (9:56)
m4v / mp4 / page-1 / page-2
The equation of continuity (22:37)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Spherical coordinates / general spherical wave solution (14:24)
m4v / mp4 / page-1 / page-2
Spherical sound waves (17:03)
m4v / mp4 / page-1 / page-2 / comments
Energy density and transfer rate for spherical sound waves (19:59)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Sound waves in fluids (21:25)
m4v / mp4 / page-1 / page-2 / page-3
Reflection of waves from a boundary (1:08:33)
Electromagnetic waves (1:09:19)
Maxwell's equations in integral form (8:16)
m4v / mp4 / page-1
Conversion to differential form: Gauss's Laws / The divergence theorem (17:17)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Conversion to differential form: Faraday/Ampere/Maxwell Laws / Stokes' thereom (21:37)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Plane wave solutions (22:08)
m4v / mp4 / page-1 / page-2 / page-3
General theory of optics (3:15:57)
Mathematical description of a general optical device (12:47)
m4v / mp4 / page-1 / page-2
Spherical and flat mirrors (14:48)
m4v / mp4 / page-1 / page-2 / comments
Spherical and flat refracting surfaces (10:27)
m4v / mp4 / page-1 / page-2
General linear devices (15:40)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Reverse and composite devices; the thin lens (18:56)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Object and image points (13:28)
m4v / mp4 / page-1 / page-2 / comments
Object point to image point mapping for linear devices (17:48)
m4v / mp4 / page-1 / page-2 / comments
Object/image distances and focal lengths (12:22)
m4v / mp4 / page-1 / page-2 / page-3
Object focal point (12:55)
m4v / mp4 / page-1 / page-2 / page-3 / comments
Image focal point (11:37)
m4v / mp4 / page-1 / page-2 / page-3 / comments
More on the relationship between object distance and image distance (13:09)
m4v / mp4 / page-1 / page-2
Quantifying rate of divergence of a bundle of rays (16:34)
m4v / mp4 / page-1 / page-2 / page-3
Neutral optical devices (11:46)
m4v / mp4 / page-1 / page-2 / comments
PHYC 2A Chapter Review Lectures (24:37:25)
Chapter 1: Introduction and Mathematical Concepts (17:56)
Chapter 2: Kinematics in One Dimension (37:26)
Definitions of position, displacement, speed, velocity, and acceleration (12:56)
m4v / mp4 / page-1 / page-2
Direction of acceleration: speeding up or slowing down? (4:22)
m4v / mp4 / page-1
Constant acceleration and vertical free-fall (11:17)
m4v / mp4 / page-1 / page-2
Understanding motion through graphs (x vs t) (8:52)
m4v / mp4 / page-1 / page-2
Chapter 3: Kinematics in Two Dimensions (51:56)
Chapter 4: Forces and Newton's Laws of Motion (1:24:07)
Chapter 5: Dynamics of Uniform Circular Motion (45:38)
Chapter 6: Work and Energy (1:18:01)
Kinetic energy and work (constant force: 1-D and 2/3-D) (21:49)
m4v / mp4 / page-1 / page-2 / page-3
Work done by specific forces (gravity, normal, tension, friction) (20:47)
m4v / mp4 / page-1 / page-2 / page-3
Work done by lift forces and other (possibly non-constant) forces: the 'back door' approach (5:19)
m4v / mp4 / page-1
Gravitational potential energy (12:26)
m4v / mp4 / page-1 / page-2
Mechanical energy (17:42)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 7: Impulse and Momentum (47:22)
Chapter 8: Rotational Kinematics (57:34)
Chapter 9: Rotational Dynamics (1:33:01)
Translation/rotation analogy; Newton's second law for rotation (9:35)
m4v / mp4 / page-1
Rotational inertia (18:59)
m4v / mp4 / page-1 / page-2 / page-3
Rotational kinetic energy; rolling down (and up) an incline (28:05)
m4v / mp4 / page-1 / page-2 / page-3
One final comment for part E (cut off due to lack of phone memory) (0:52)
m4v / mp4
Chapter 10: Simple Harmonic Motion and Elasticity (1:06:14)
Chapter 11: Fluids (1:51:43)
Static fluids: how pressure varies with depth (19:23)
m4v / mp4 / page-1 / page-2 / page-3
Pascal's principle; the hydraulic lever (13:36)
m4v / mp4 / page-1 / page-2
Kinematics of moving fluids: stream lines and volume/mass flowrates (21:46)
m4v / mp4 / page-1 / page-2 / page-3
Dynamics of moving fluids: Bernouli's principle (26:00)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 12: Temperature and Heat (1:45:30)
Temperature units and measurement (15:12)
m4v / mp4 / page-1 / page-2
Thermal expansion (15:51)
m4v / mp4 / page-1 / page-2 / page-3
Heat, heat capacity, and specific heat (per mass) (13:18)
m4v / mp4 / page-1 / comments
Phase changes and latent heat (15:41)
m4v / mp4 / page-1 / page-2
Example problems involving specific heat and latent heat (19:55)
m4v / mp4 / page-1 / page-2
Vapor pressure and phase coexistance (25:34)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 13: The Transfer of Heat (1:27:23)
Chapter 14: The Ideal Gas Law and Kinetic Theory (2:00:11)
Avogadro's number and molar masses (14:04)
m4v / mp4 / page-1 / page-2
Equipartition theorem, Maxwell speed distribution, and the specific heat (per molecule) for a monatomic ideal gas (23:15)
m4v / mp4 / page-1 / page-2 / page-3
Derivation of the ideal gas law from the equipartition theorem. (13:18)
m4v / mp4 / page-1 / page-2
Specific heats for diatomic ideal gasses and beyond (30:58)
m4v / mp4 / page-1 / page-2
Chapter 15: Thermodynamics (4:14:25)
First (and zeroth) law of thermodynamics (2:01:44)
Introduction and the zeroth law (10:53)
m4v / mp4 / page-1 / page-2
Heat, work, and internal energy: the first law (20:19)
m4v / mp4 / page-1 / page-2 / page-3
Thermal processes (general) (17:37)
m4v / mp4 / page-1 / page-2
Thermal processes for ideal gasses: c_p and c_v (30:31)
m4v / mp4 / page-1 / page-2 / page-3
Discussion of relationship between c_p and c_v for ideal gasses and for general materials (17:40)
m4v / mp4 / page-1 / page-2
Second (and third) law of thermodynamics (2:12:41)
The second law: reversible and irreversible processes (19:32)
m4v / mp4 / page-1 / page-2 / page-3
Efficiency and coefficients of performance of reversible and irreversible heat engines and heat pumps (27:20)
m4v / mp4 / page-1 / page-2 / page-3
Efficiency of the Carnot engine (derivation) (21:16)
m4v / mp4 / page-1 / page-2 / page-3
Entropy and the second law (30:25)
m4v / mp4 / page-1 / page-2 / page-3
Entropy in terms of microstates; the third law (14:11)
m4v / mp4 / page-1 / page-2
Chapter 16: Waves and Sound (1:12:41)
Chapter 17: The Principle of Linear Superposition and Interference Phenomena (1:27:50)
Reflection from a boundary; standing waves in a string (18:54)
m4v / mp4 / page-1 / page-2 / page-3
Standing sound waves (19:26)
m4v / mp4 / page-1 / page-2 / page-3
Constructive and destructive interference (17:04)
m4v / mp4 / page-1 / page-2
Standing waves revisited (13:18)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 17m: Sound and Music (58:28)
Music primer: notes, scales, intervals, and associated frequencies (11:53)
m4v / mp4 / page-1
Music primer: notes, scales, and intervals (piano demonstration) (9:01)
m4v / mp4
Overtone demonstration (piano demonstration) (11:46)
m4v / mp4
Tone color demonstration: Saint Saens, Piano Concerto No. 5, Op. 103, 2nd mvt. (piano demonstration) (9:55)
m4v / mp4