This page contains complete lecture videos for PHYC 2A.
The html source for this outline can be downloaded by following the links below (you may need to rename the file to ".htm" to get it to work on your computer):
PHYC 2A lectures (55:34:08)
Chapter 1: Introduction and Mathematical Concepts (3:20:09)
Units and dimensional analysis (1:18:24)
Vectors (2:01:45)
Vectors vs. scalars (definitions and examples) (14:42)
m4v / mp4 / page-1 / page-2 / page-3
Definition and interpretation of vector addition (21:16)
m4v / mp4 / page-1 / page-2 / page-3
Definition and interpretation of vector subtraction (10:56)
m4v / mp4 / page-1 / page-2
Vector components (2D and 3D) (15:11)
m4v / mp4 / page-1 / page-2
Conversion between magnitude+direction and components in 2D (24:35)
m4v / mp4 / page-1 / page-2
Adding and subtracting vectors using the component method (30:09)
m4v / mp4 / page-1 / page-2 / page-3
Multiplying (and dividing) a vector by a scalar (4:55)
m4v / mp4 / page-1
Chapter 2: Kinematics in One Dimension (4:40:51)
Basic definitions (1:32:16)
Constant acceleration (1:31:16)
Vertical free fall (44:29)
Graphing motion (52:50)
Chapter 3: Kinematics in Two Dimensions (3:38:10)
Basic definitions (1:08:21)
Projectile motion (1:15:08)
Relative motion (1:14:41)
Chapter 4: Forces and Newton's Laws of Motion (7:17:22)
Newton's Laws (1:35:17)
Types of forces (2:03:51)
Applications of Newton's second law (3:38:14)
Block hanging from ceiling (30:47)
m4v / mp4 / page-1 / page-2
Block pushed along floor: no friction (16:22)
m4v / mp4 / page-1
Block pushed along floor: include friction (39:57)
m4v / mp4 / page-1 / page-2
Incline plane (no friction) (27:53)
m4v / mp4 / page-1 / page-2
Block attached to hanging weight (pt 1) (18:40)
m4v / mp4 / page-1
Block attached to hanging weight (pt 2) (29:22)
m4v / mp4 / page-1 / page-2
Chapter 5: Dynamics of Uniform Circular Motion (1:18:11)
Centripetal Acceleration (29:56)
Applications of Newton's second law to uniform circular motion (48:15)
Inertial and non-inertial reference frames (1:34:55)
Newton's second law for non-inertial reference frames; the inertial force (15:55)
m4v / mp4 / page-1 / page-2
Real world examples of the inertial force (23:15)
m4v / mp4 / page-1 / page-2
Problem 1: range of a cannon inside an accelerating elevator (17:04)
m4v / mp4 / page-1 / page-2 / page-3
Problem 2: block hanging from the roof of a car travelling in uniform circular motion (13:25)
m4v / mp4 / page-1 / page-2
Problem 3: car travelling around a banked curve with friction (25:17)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 6: Work and Energy (4:30:16)
Kinetic Energy (2:36:36)
Potential and Mechanical Energy (1:53:40)
Chapter 7: Impulse and Momentum (2:27:23)
Impulse-Momentum theorem (1:03:32)
Conservation of momentum (1:23:51)
Chapter 8: Rotational Kinematics (2:15:14)
Basic definitions (58:57)
Motion of particles in a rotating object (54:54)
Rolling motion (21:23)
Chapter 9: Rotational Dynamics (4:53:04)
Torque and rotational inertia (1:35:06)
Applications of Newton's second law for rotation (1:56:04)
Rotational energy (1:21:54)
Chapter 10: Simple Harmonic Motion and Elasticity (2:46:16)
Spring force (41:44)
Spring-mass oscillations (55:39)
Spring potential energy (1:03:50)
Chapter 11: Fluids (3:49:02)
Chapter 16: Waves and Sound (1:16:07)
Chapter 17: The Principle of Linear Superposition and Interference Phenomena (1:27:20)
Chapter 17m: Sound and Music (58:28)
Music primer: notes, scales, intervals, and associated frequencies (11:53)
m4v / mp4 / page-1
Music primer: notes, scales, and intervals (piano demonstration) (9:01)
m4v / mp4
Overtone demonstration (piano demonstration) (11:46)
m4v / mp4
Tone color demonstration: Saint Saens, Piano Concerto No. 5, Op. 103, 2nd mvt. (piano demonstration) (9:55)
m4v / mp4
Chapter 12: Temperature and Heat (1:39:20)
Temperature units and measurement (15:12)
m4v / mp4 / page-1 / page-2
Thermal expansion (15:51)
m4v / mp4 / page-1 / page-2 / page-3
Heat, heat capacity, and specific heat (per mass) (8:58)
m4v / mp4 / page-1
Measuring specific heat (18:04)
m4v / mp4 / page-1 / page-2 / page-3
Phase changes and latent heat (15:41)
m4v / mp4 / page-1 / page-2
Vapor pressure and phase coexistance (25:34)
m4v / mp4 / page-1 / page-2 / page-3
Chapter 13: The Transfer of Heat (1:27:23)
Chapter 14: The Ideal Gas Law and Kinetic Theory (2:00:11)
Avogadro's number and molar masses (14:04)
m4v / mp4 / page-1 / page-2
Equipartition theorem, Maxwell speed distribution, and the specific heat (per molecule) for a monatomic ideal gas (23:15)
m4v / mp4 / page-1 / page-2 / page-3
Derivation of the ideal gas law from the equipartition theorem. (13:18)
m4v / mp4 / page-1 / page-2
Specific heats for diatomic ideal gasses and beyond (30:58)
m4v / mp4 / page-1 / page-2
Chapter 15: Thermodynamics (4:14:25)
First (and zeroth) law of thermodynamics (2:01:44)
Introduction and the zeroth law (10:53)
m4v / mp4 / page-1 / page-2
Heat, work, and internal energy: the first law (20:19)
m4v / mp4 / page-1 / page-2 / page-3
Thermal processes (general) (17:37)
m4v / mp4 / page-1 / page-2
Thermal processes for ideal gasses: c_p and c_v (30:31)
m4v / mp4 / page-1 / page-2 / page-3
Discussion of relationship between c_p and c_v for ideal gasses and for general materials (17:40)
m4v / mp4 / page-1 / page-2
Second (and third) law of thermodynamics (2:12:41)
The second law: reversible and irreversible processes (19:32)
m4v / mp4 / page-1 / page-2 / page-3
Efficiency and coefficients of performance of reversible and irreversible heat engines and heat pumps (27:20)
m4v / mp4 / page-1 / page-2 / page-3
Efficiency of the Carnot engine (derivation) (21:16)
m4v / mp4 / page-1 / page-2 / page-3
Entropy and the second law (30:25)
m4v / mp4 / page-1 / page-2 / page-3
Entropy in terms of microstates; the third law (14:11)
m4v / mp4 / page-1 / page-2