This page contains lecture videos for PHYC 4A, as part of the comprehensive 4-series lecture video project.
The html source for this outline can be downloaded by following the link below (you may need to rename the file to ".htm" to get it to work on your computer):
Classical Mechanics (from project and 2A) (91:04:01)
How physics relates to other fields of study (50:36)
Units (1:45:16)
Vectors (10:19:06)
Basic properties (2:47:33)
Products of vectors (2:09:08)
The dot product: definition and basic properties (13:18)
m4v / mp4 / page-1
Parallel and perpendicular components (11:45)
m4v / mp4 / page-1
The cross product: definition and basic properties (21:26)
m4v / mp4 / page-1
Example: evaluating the cross product (7:03)
m4v / mp4 / page-1
Geometric tricks: law of cosines and law of sines (13:33)
m4v / mp4 / page-1
Geometric tricks: angle between vectors (10:02)
m4v / mp4 / page-1
Geometric tricks: areas and volumes (12:54)
m4v / mp4 / page-1
Triple product identities: derivation 1 (10:04)
m4v / mp4 / page-1
Triple product identities: derivation 2 (19:55)
m4v / mp4 / page-1
Alternative coordinate systems (2:11:41)
Length of day (an application of spherical coordinates) (3:10:44)
Kinematics in one dimension (6:51:39)
Basic definitions (1:21:26)
Representations of motion (1:43:44)
Constant acceleration (1:27:06)
Vertical free-fall (2:00:23)
Quantity vs. change in quantity vs. average quantity (19:00)
m4v / mp4 / page-1
Kinematics in two and three dimensions (6:45:36)
Basic relationships (2:46:30)
Position in two and three dimensions (10:25)
m4v / mp4 / page-1
Redefining other kinematic variables in two and three dimensions (11:42)
m4v / mp4 / page-1
Example (19:05)
m4v / mp4 / page-1 / page-2 / page-3 / page-4
Acceleration vs velocity: speeding up, slowing down, changing direction (1:45:18)
Projectile motion (1:32:37)
Uniform circular motion (54:40)
Relative motion (1:31:49)
Forces and Newton's laws (28:42:04)
Newton's laws (1:10:15)
Force laws (1:56:01)
Force problems (3:58:39)
Hanging block (27:27)
Block on floor (angled push) (56:09)
Two horizontal forces on block (2-D example) revisited (23:38)
m4v / mp4 / page-1 / page-2 / page-3
Block pushed against vertical wall (21:32)
m4v / mp4 / page-1
Block on incline plane (1:14:55)
Static friction between tires and road for accelerating car (26:52)
m4v / mp4 / page-1
Multiple objects (5:09:07)
Sliding block connected to hanging block (1:22:43)
Stacked blocks, horizontal force on top block (1:27:30)
Block sliding down a movable incline (1:44:08)
Circular motion (3:04:34)
Block on a string (31:47)
Car rounding a bend (1:11:39)
Normal force on curved surfaces (49:08)
Non-inertial reference frames (1:58:07)
Real world examples (58:14)
Force problems in non-inertial reference frames (46:45)
Position and velocity dependent forces (7:38:04)
Spring force (53:22)
Inverse square forces (1:01:13)
Drag (fluid resistance) forces (2:22:43)
Terminal velocity (50:24)
Model discussion (1:12:51)
General solution methods (2:50:39)
Newton's second law as a differential equation (20:11)
m4v / mp4 / page-1 / page-2 / page-3
Fall from rest: linear air resistance (23:12)
m4v / mp4 / page-1
Separation of variables for math purists (9:47)
m4v / mp4 / page-1
Fall from rest: quadratic air resistance (8:41)
m4v / mp4 / page-1
Other situations involving air resistance (9:56)
m4v / mp4 / page-1
Spring-mass oscillations (spreadsheet) (32:40)
m4v / mp4 / page-1
2-D kinetic friction example revisited (spreadsheet) (25:05)
m4v / mp4 / page-1
Dimensional analysis (3:47:17)
Systems of particles (8:39:43)
Center of mass (4:16:12)
Continuous distributions (3:38:47)
Example: 2-D non-uniform rectangle (22:04)
m4v / mp4 / page-1 / page-2
Example: 2-D uniform triangle (16:37)
m4v / mp4 / page-1 / page-2
General parameterizations (2:30:41)
1-D curves: parameterization and line element (13:51)
m4v / mp4 / page-1
3-D region: parameterization and volume element (12:13)
m4v / mp4 / page-1
Example: uniform semi-circular rod (14:07)
m4v / mp4 / page-1
Example: uniform semi-circular disk (16:56)
m4v / mp4 / page-1
Example: uniform hemi-spherical surface (13:13)
m4v / mp4 / page-1
Example: uniform hemi-spherical volume (10:00)
m4v / mp4 / page-1
Cartesian, cylindrical, and spherical coordinate systems (13:15)
m4v / mp4 / page-1 / page-2 / page-3 / page-4
Example: uniform triangle (22:53)
m4v / mp4 / page-1 / page-2
Newton's second law for systems (1:57:03)
Two object systems (1:42:31)
Newton's third law and indirect interactions (34:16)
Conservation laws (2:02:21)
Impulse and Momentum (from 2A) (2:27:23)
Impulse-Momentum theorem (1:03:32)
Conservation of momentum (1:23:51)
Work and Energy (from 2A) (4:30:16)
Kinetic Energy (2:36:36)
Potential and Mechanical Energy (1:53:40)
Rotational Kinematics (from 2A) (2:15:14)
Basic definitions (58:57)
Motion of particles in a rotating object (54:54)
Rolling motion (21:23)
Rotational Dynamics (from 2A) (4:53:04)
Torque and rotational inertia (1:35:06)
Applications of Newton's second law for rotation (1:56:04)
Rotational energy (1:21:54)
Fluids (from 2A) (3:49:02)
Systems with one degree of freedom (from pre-2020 videos) (7:12:41)
Definition and examples (23:39)
m4v / mp4 / page-1 / page-2 / page-3
Generalized position, velocity, and acceleration (14:34)
m4v / mp4 / page-1 / page-2
Relating generalized quantities to the motion of various parts of the system (25:24)
m4v / mp4 / page-1 / page-2 / page-3
Derivation of Newton's 2nd Law (1-D translation) from the Work-Energy Theorem (11:23)
m4v / mp4 / page-1 / page-2
Generalization of Newton's 2nd Law --- application to translation and rotation (26:42)
m4v / mp4 / page-1 / page-2 / page-3
Example: Two masses connected by a rope over a pulley (32:38)
m4v / mp4 / page-1 / page-2 / page-3
Example: Rolling object on an incline (24:07)
m4v / mp4 / page-1 / page-2
Example: Two pulley system (mechanical advantage) (30:27)
m4v / mp4 / page-1 / page-2
Example: Mechanical lever (14:09)
m4v / mp4 / page-1 / page-2
Example: Gear system (common rotation) (18:16)
m4v / mp4 / page-1 / page-2
Example: Gear system (common outer translational speed) (17:34)
m4v / mp4 / page-1 / page-2
Example: Bicycle (36:17)
m4v / mp4 / page-1 / page-2 / page-3
Some general notes on dynamics (21:48)
m4v / mp4 / page-1 / page-2 / page-3
Which forces can be ignored (43:01)
m4v / mp4 / page-1 / page-2 / page-3
Summary of simple spring-mass system (14:17)
m4v / mp4 / page-1 / page-2
Generalized harmonic oscillations (9:59)
m4v / mp4 / page-1 / page-2
Example: Spring-mass system with a massive spring (17:57)
m4v / mp4 / page-1 / page-2
Example: Spring attached to a rotating board (9:12)
m4v / mp4 / page-1
Example: Fluid oscillations in a U-tube (11:05)
m4v / mp4 / page-1
Example: Spring-mass oscillations involving the two-pulley system (mechanical advantage) (9:40)
m4v / mp4 / page-1 / page-2
Epilog: Systems with more than one degree of freedom (12:47)
m4v / mp4 / page-1 / page-2 / page-3