Response function of laser induced birefrengence in liquid water, from ambient temperature to supercooled state.
My present research interest is on the experimental investigation of "Soft Matter Physics", this focuses on the study of a variety of physical systems whose properties are intermediate between liquid and solid states. All these materials, despite their very different nature, share an important common physical feature: soft matter self-organizes into mesoscopic structures that are much larger than the microscopic scale and yet are much smaller than the macroscopic (overall) scale of the material. At LENS we study structure and dynamics of soft matter by means time-resolved laser spectroscopy, exciting the sample impulsively. It is thus possible to follow the sample response over a very wide time scale, from picosecond to millisecond, and investigate a variety of soft matter properties, including molecular vibrations, structural-rotational relaxation, elastic-acoustic propagation and thermal diffusion.
More details at these pages: