Energy Storage

Design and Analysis of the Electrode-Electrolyte Interface

(Electro)catalysis provides exciting opportunities to address some of the impending global changes of the 21st century ranging from energy and environment to food and chemical production. The unique catalytic activity of the electrode stems from its distinctive geometric and electronic structure, which can be tuned to facilitate numerous (electro)catalytic processes on the surface, including insertion, adsorption, conversion, and desorption of reactant and product molecules in organic/aqueous media. Although the electrocatalytic activity has been improved by tuning the electronic structure of the electrode materials, there has been little focus on engineering the electrode/electrolyte interface. Furthermore, little is known about molecular processes and interactions that govern reaction efficiency, activity, stability, and selectivity, limiting the design of new functional electrode/electrolyte interfaces. Therefore, there are immense opportunities for fundamental research of electrode/electrolyte interfaces to identify governing parameters that dictate the complex interactions at interfaces. Our group aims to connect the understanding of surface reaction mechanisms obtained by in situ/ex situ spectroscopic techniques combined with theoretical analysis to activity and stability of the catalysts, as well as to establish novel design principles for designing electrode/electrolyte interfaces.


電気化学反応は、エネルギー貯蔵・エネルギー変換・材料合成など幅広い分野で我々の豊かな生活を支えています。これらの反応は全て、固体の電極材料と液体の電解液材料の境界「電極/電解液界面」にて進行しており、この「界面」の理解が反応特性のさらなる改善には必要不可欠です。しかしながら、「界面」での反応の描像を捉えることは難しく、また「界面」を適切に設計する手法が確立されていないことから、これまでこの「界面」を能動的に制御した例はほとんどありません。

我々のグループでは、独自のオペランド解析と理論化学的手法の協奏による、電極/電解液界面反応の原子レベルでの可視化に挑戦しています。さらに、得られた知見を材料設計へと応用することで、液体・固体材料設計を包含した「電極/電解液界面」の能動制御を実現します。これにより、エネルギー・環境問題の解決に資する電気エネルギー貯蔵反応(二次電池反応)の特性を飛躍的に向上させる、界面能動制御手法を確立します。