Publications

【Journal Articles | Peer-Reviewed 】 (学術雑誌論文 | 査読あり)

      1. Tatsuro Yamada, Hiroyuki Matsunaga, Tetsuya Ogata, "Paired Recurrent Autoencoders for Bidirectional Translation between Robot Actions and Linguistic Descriptions," IEEE Robotics and Automation Letters (RA-L), accepted, 2018. Open Access
      2. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions,” Frontiers in Neurorobotics, (2017 JIF: 2.606), Vol. 11, Article 70, pp. 1–18, 2017. Open Access
      3. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human–Robot Interaction ,” Frontiers in Neurorobotics (2017 JIF: 2.606), Vol. 10, Article 5, pp. 1–17, 2016. Open Access

【International Conference Papers | Peer-Reviewed】 (国際会議論文 | 査読あり)

      1. Tatsuro Yamada, Hiroyuki Matsunaga, and Tetsuya Ogata, "Paired Recurrent Autoencoders for Bidirectional Translation between Robot Actions and Linguistic Descriptions," Proceedings of 2018 IEEE/RAS International Conference on Intelligent Robots and Systems (IROS 2018), Accepted, (acceptance rate 46.7%), Madrid, Spain, October 1-5, 2018.
      2. Tatsuro Yamada, Tetsuro Kitahara, Hiroaki Arie, and Tetsuya Ogata, “Four-part Harmonization: Comparison of a Bayesian Network and a Recurrent Neural Network,” The 13th International Symposium on Computer Music Multidisciplinary Research (CMMR2017), Porto, Portugal, September 2017.
      3. Tatsuro Yamada, Saki Ito, Hiroaki Arie, and Tetsuya Ogata, “Learning of Labeling Room Space for Mobile Robots Based on Visual Motor Experience,” The 26th International Conference on Artificial Neural Networks 2017 (ICANN2017) , Accepted for Oral Presentation (Acceptance Rate: 47.4%), Alghero, Italy, September 2017.
      4. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Dynamical Linking of Positive and Negative Sentences to Goal-oriented Robot Behavior by Hierarchical RNN,” In Artificial Neural Networks and Machine Learning — ICANN 2016, Lecture Notes in Computer Science (LNCS), Alessandro E.P. Villa et al. (Eds.), Vol. 9886, pp. 339–346, 2016 (Proceedings of the 25th International Conference on Artificial Neural Networks (ICANN 2016), Accepted for Oral Presentation, Barcelona, Spain, September 2016), Travel grant from the Telecommunications Advancement Foundation, Best Paper Award.
      5. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Attractor Representations of Language–behavior Structure in a Recurrent Neural Network for Human–robot Interaction,” In In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015), Accepted (Acceptance Rate: 46%), pp. 4179–4184, Hamburg, Germany, September 2015, Travel Grant from the Hara Research Foundation.
      6. Shingo Murata, Saki Tomioka, Ryoichi Nakajo, Tatsuro Yamada, Hiroaki Arie, Tetsuya Ogata, and Shigeki Sugano, “Predictive Learning with Uncertainty Estimation for Modeling Infants’ Cognitive Development with Caregivers: A Neurorobotics Experiment,” In Proceedings of the Fifth Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2015), Accepted for Oral Presentation , pp. 302–307, Providence, USA, August 2015.

【International Conference Abstract | Peer-Reviewed】 (国際会議アブストラクト | 査読あり)

      1. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Representation Learning of Logical Words via Seq2seq Learning from Linguistic Instructions to Robot Actions,” Workshop on Representation Learning for Human and Robot Cognition, The 5th International Conference on Human–Agent Interaction (HAI 2017) , Accepted for Oral Presentation, Bielefeld, Germany, October 2017
      2. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Logically Complex Symbol Grounding for Interactive Robots by Seq2seq Learning with an LSTM-RNN,” In The Thirtieth Annual Conference on Neural Information Processing Systems (NIPS2016, Acceptance Rate for demonstration: 36.4%), Barcelona, Spain, December 2016.

【Domestic Conferences】 (国内会議論文 | 査読なし)

      1. 山田竜郎,松永寛之,尾形哲也,“共有表現の学習によるロボット動作と指示説明文の双方向変換,” 第32回人工知能学会全国大会,鹿児島,2018年6月.
      2. 澤弘樹,山田竜郎,村田真悟,森裕紀,尾形哲也,菅野重樹, “RNNを備えた二台ロボット間インタラクションの複雑性解析,” 情報処理学会 第80回全国大会,東京,2018年3.
      3. 張耀宇,中條亨一,山田竜郎,村田真悟,有江浩明,尾形哲也,“神経回路モデルにおける追加学習手法に関する検討,” 第18回計測自動制御学会システムインテグレーション部門講演会,宮城,2017年12月.
      4. 伊藤彩貴,山田竜郎,有江浩明,尾形哲也,“深層学習を用いた移動ロボットによる室内空間の状況依存的ラベリング,” 第35回日本ロボット学会 学術講演会,埼玉,2017年9月.
      5. 山田竜郎,村田真悟,有江浩明,尾形哲也,“Seq2seq学習による論理語を含む言語指示の理解とロボット行動の生成,” 第31回人工知能学会全国大会,愛知,2017年5月.
      6. 山田竜郎,北原鉄朗,有江浩明,尾形哲也,“LSTMを用いた四声体和声の生成,” 第31回人工知能学会全国大会,愛知,2017年5月.
      7. 山田竜郎,村田真悟,有江浩明,尾形哲也,“階層型RNNを用いたロボットの旗揚げタスクにおける肯定及び否定指示の理解,” 第30回人工知能学会全国大会,福岡,2016年6月.
      8. 山田竜郎,村田真悟,有江浩明,尾形哲也,“ターンテイキングタスクを行うロボットのための神経回路力学系上における言語と行動の動的統合,” 第33回日本ロボット学会 学術講演会,1B3-05,東京,2015年9月.
      9. 冨岡咲希,村田真悟,中條亨一,山田竜郎,有江浩明,尾形哲也,菅野重樹,“養育者-幼児間インタラクションの認知ロボティクスモデル —予測学習とその不確実性に基づく注意対象の遷移,” 日本赤ちゃん学会 第15回学術集会,香川,2015年6月.
      10. 山田竜郎,村田真悟,有江浩明,尾形哲也,“人間ロボットインタラクションを目的とした神経回路による言語と行動のアトラクタ表現,” 情報処理学会 第77回全国大会,5T-01,京都,2015年3月.学生奨励賞