Some good resources and papers to take a look if you are applying for PhD, Research Assistant or Research Intern positions:
How to Get Started with Embodied AI Research
Robot Learning (Embodied AI)
Zhao, T., Kumar, V., Levine, S., & Finn, C. (2023). Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware. Robotics: Science and Systems (RSS 2023).
Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., ... & Song, S. (2023). Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics Research, 02783649241273668.
Luo, J., Xu, C., Wu, J., & Levine, S. (2025). Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning. Science Robotics. 10, eads5033. DOI:10.1126/scirobotics.ads5033
Lei, K., Li, H., Yu, D., Wei, Z., Guo, L., Jiang, Z., ... & Xu, H. (2025). RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning. arXiv preprint arXiv:2510.14830.
Li, H., Lei, K., Zang, S., Hu, K., Liang, Y., An, B., ... & Xu, H. (2026). Failure-Aware RL: Reliable Offline-to-Online Reinforcement Learning with Self-Recovery for Real-World Manipulation. arXiv preprint arXiv:2601.07821.
Zhao, Y., Jin, H., Jiang, L., Zhang, X., Wu, K., Ren, P., ... & Tang, J. (2025). Real-world Reinforcement Learning from Suboptimal Interventions. arXiv preprint arXiv:2512.24288.
Intelligence, P., Amin, A., Aniceto, R., Balakrishna, A., Black, K., Conley, K., ... & Zhou, Z. (2025). $\pi^{*} _ {0.6} $: a VLA That Learns From Experience. arXiv preprint arXiv:2511.14759.
Pan, M., Feng, S., Zhang, Q., Li, X., Song, J., Qu, C., ... & Luo, J. (2026). SOP: A Scalable Online Post-Training System for Vision-Language-Action Models. arXiv preprint arXiv:2601.03044.
Li, Y., Ma, X., Xu, J., Cui, Y., Cui, Z., Han, Z., ... & Wu, Y. (2025). GR-RL: Going dexterous and precise for long-horizon robotic manipulation. arXiv preprint arXiv:2512.01801.
Hou, Y., Liu, Z., Chi, C., Cousineau, E., Kuppuswamy, N., Feng, S., ... & Song, S. (2024). Adaptive Compliance Policy: Learning Approximate Compliance for Diffusion Guided Control. arXiv preprint arXiv:2410.09309.
Choi, H., Hou, Y., Pan, C., Hong, S., Patel, A., Xu, X., ... & Song, S. (2026). In-the-Wild Compliant Manipulation with UMI-FT. arXiv preprint arXiv:2601.09988.
Xue, H., Ren, J., Chen, W., Zhang, G., Fang, Y., Gu, G., ... & Lu, C. (2025). Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation. arXiv preprint arXiv:2503.02881.
Chen, W., Xue, H., Wang, Y., Zhou, F., Lv, J., Jin, Y., ... & Lu, C. (2025). ImplicitRDP: An End-to-End Visual-Force Diffusion Policy with Structural Slow-Fast Learning. arXiv preprint arXiv:2512.10946.
Yu, J., Liu, H., Yu, Q., Ren, J., Hao, C., Ding, H., ... & Zhang, W. (2025). ForceVLA: Enhancing VLA Models with a Force-aware MoE for Contact-rich Manipulation. arXiv preprint arXiv:2505.22159.
Xu, X., Hou, Y., Liu, Z., & Song, S. (2025). Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections. arXiv preprint arXiv:2506.16685, NeurIPS 2025.
Zhu, X., Huang, B., & Li, Y. (2025). Touch in the Wild: Learning Fine-Grained Manipulation with a Portable Visuo-Tactile Gripper. arXiv preprint arXiv:2507.15062., NeurIPS 2025.
Huang, B., Xu, J., Akinola, I., Yang, W., Sundaralingam, B., O'Flaherty, R., ... & Li, Y. (2025). VT-Refine: Learning Bimanual Assembly with Visuo-Tactile Feedback via Simulation Fine-Tuning, CoRL 2025.
Sun, Z., & Song, S. (2025). Latent Policy Barrier: Learning Robust Visuomotor Policies by Staying In-Distribution. arXiv preprint arXiv:2508.05941.
Zhang, Z., Xu, H., Yang, Z., Yue, C., Lin, Z., Gao, H. A., ... & Zhao, H. (2025). TA-VLA: Elucidating the Design Space of Torque-aware Vision-Language-Action Models. arXiv preprint arXiv:2509.07962, CoRL 2025.
Xu, B., Weng, H., Lu, Q., Gao, Y., & Xu, H. (2025). FACET: Force-Adaptive Control via Impedance Reference Tracking for Legged Robots. arXiv preprint arXiv:2505.06883, CoRL 2025.
Zhi, P., Li, P., Yin, J., Jia, B., & Huang, S. (2025). Learning Unified Force and Position Control for Legged Loco-Manipulation. arXiv preprint arXiv:2505.20829, CoRL 2025 Best Paper Award.
Ge, H., Jia, Y., Li, Z., Li, Y., Chen, Z., Huang, R., & Zhou, G. (2025). FILIC: Dual-Loop Force-Guided Imitation Learning with Impedance Torque Control for Contact-Rich Manipulation Tasks. arXiv preprint arXiv:2509.17053.
Zhao, Z., Haldar, S., Cui, J., Pinto, L., & Bhirangi, R. (2025). Touch begins where vision ends: Generalizable policies for contact-rich manipulation. arXiv preprint arXiv:2506.13762.
Xiao, W., Lin, H., Peng, A., Xue, H., He, T., Xie, Y., ... & Zhu, Y. (2025). Self-Improving Vision-Language-Action Models with Data Generation via Residual RL. arXiv preprint arXiv:2511.00091.
Huang, D., Navab, N., & Jiang, Z. (2025). Improving Robustness to Out-of-Distribution States in Imitation Learning via Deep Koopman-Boosted Diffusion Policy. IEEE Transactions on Robotics.
Gong, Z., Lyu, S., Ding, P., Xiao, W., & Wang, D. (2025). Robust Online Residual Refinement via Koopman-Guided Dynamics Modeling. arXiv preprint arXiv:2509.12562.
Huang, D., Navab, N., & Jiang, Z. (2025). Improving Robustness to Out-of-Distribution States in Imitation Learning via Deep Koopman-Boosted Diffusion Policy. IEEE Transactions on Robotics.
Xu, Z., Miao, Z., Qiu, Q., Zhang, Z., & She, Y. (2025). DiffOG: Differentiable Policy Trajectory Optimization with Generalizability. arXiv preprint arXiv:2504.13807. IEEE Transactions on Robotics.
Heng, L., Geng, H., Zhang, K., Abbeel, P., & Malik, J. (2025). ViTacFormer: Learning Cross-Modal Representation for Visuo-Tactile Dexterous Manipulation. arXiv preprint arXiv:2506.15953.
Huang, J., Ye, Y., Gong, Y., Zhu, X., Gao, Y., & Zhang, K. (2025). Spatially anchored Tactile Awareness for Robust Dexterous Manipulation. arXiv preprint arXiv:2510.14647.
Hsieh, E., Hsieh, W. H., Wang, Y. J., Lin, T., Malik, J., Sreenath, K., & Qi, H. (2025). Learning Dexterous Manipulation Skills from Imperfect Simulations. arXiv preprint arXiv:2512.02011.
Suresh, S., Qi, H., Wu, T., Fan, T., Pineda, L., Lambeta, M., ... & Mukadam, M. (2024). NeuralFeels with neural fields: Visuotactile perception for in-hand manipulation. Science Robotics, 9(96), eadl0628.
Agile Robot Control
Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Champion-level drone racing using deep reinforcement learning. Nature, 620(7976), 982-987.
Song, Y., Romero, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics, 8(82), eadg1462.
Romero, A., Aljalbout, E., Song, Y., & Scaramuzza, D. (2024). Actor-critic model predictive control: Differentiable optimization meets reinforcement learning. arXiv preprint arXiv:2306.09852. (TRO 2026)
Luo, S., Jiang, M., Zhang, S., Zhu, J., Yu, S., Dominguez Silva, I., ... & Su, H. (2024). Experiment-free exoskeleton assistance via learning in simulation. Nature, 630(8016), 353-359.
Romero, A., Sun, S., Foehn, P., & Scaramuzza, D. (2022). Model predictive contouring control for time-optimal quadrotor flight. IEEE Transactions on Robotics, 38(6), 3340-3356.
Wei, M., Zheng, L., Wu, Y., Mei, R., & Cheng, H. (2025). Meta-Learning Enhanced Model Predictive Contouring Control for Agile and Precise Quadrotor Flight. IEEE Transactions on Robotics.
Richards, S. M., Azizan, N., Slotine, J. J., & Pavone, M. (2023). Control-oriented meta-learning. The International Journal of Robotics Research, 42(10), 777-797.
Saied, H., Chemori, A., Bouri, M., El Rafei, M., & Francis, C. (2023). Feedforward super-twisting sliding mode control for robotic manipulators: Application to PKMs. IEEE Transactions on Robotics, 39(4), 3167-3184.
Jia, J., Zhang, W., Guo, K., Wang, J., Yu, X., Shi, Y., & Guo, L. (2023). Evolver: Online learning and prediction of disturbances for robot control. IEEE Transactions on Robotics, 40, 382-402
O’Connell, M., Shi, G., Shi, X., Azizzadenesheli, K., Anandkumar, A., Yue, Y., & Chung, S. J. (2022). Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66), eabm6597.
Jia, J., Yang, Z., Wang, M., Guo, K., Yang, J., Yu, X., & Guo, L. Feedback Favors the Generalization of Neural ODEs. In The Thirteenth International Conference on Learning Representations (ICLR 2025).
Wei, L., Feng, H., Yang, Y., Feng, R., Hu, P., Zheng, X., ... & Wu, T. (2024). Closed-loop diffusion control of complex physical systems. In The Thirteenth International Conference on Learning Representations (ICLR 2025).
Ye, N., Zeng, Z., Zhou, J., Zhu, L., Duan, Y., Wu, Y., ... & Zhou, C. (2024). OoD-Control: Generalizing Control in Unseen Environments. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Xu, B., Weng, H., Lu, Q., Gao, Y., & Xu, H. (2025). FACET: Force-Adaptive Control via Impedance Reference Tracking for Legged Robots. arXiv preprint arXiv:2505.06883, CoRL 2025
Zhi, P., Li, P., Yin, J., Jia, B., & Huang, S. (2025). Learning Unified Force and Position Control for Legged Loco-Manipulation. arXiv preprint arXiv:2505.20829, CoRL 2025 Best Paper Award.
Yang, L., Werner, B., & Ames, M. D. S. A. D. (2025). CBF-RL: Safety Filtering Reinforcement Learning in Training with Control Barrier Functions. arXiv preprint arXiv:2510.14959.
Nan, F., Ma, H., Guan, Q., Hughes, J., Muehlebach, M., & Hutter, M. (2025). Efficient Model-Based Reinforcement Learning for Robot Control via Online Learning. arXiv preprint arXiv:2510.18518.
Zhang, D., Loquercio, A., Tang, J., Wang, T. H., Malik, J., & Mueller, M. W. (2025). A learning-based quadcopter controller with extreme adaptation. IEEE Transactions on Robotics.
Safe Control
He, T., Zhang, C., Xiao, W., He, G., Liu, C., & Shi, G. (2024). Agile but safe: Learning collision-free high-speed legged locomotion. arXiv preprint arXiv:2401.17583.
Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P. (2022). Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), 411-444.
Dawson, C., Gao, S., & Fan, C. (2023). Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions on Robotics, 39(3), 1749-1767.
Berkenkamp, F., Schoellig, A. P., & Krause, A. (2016). Safe controller optimization for quadrotors with Gaussian processes. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 491-496).
Ames, A. D., Xu, X., Grizzle, J. W., & Tabuada, P. (2016). Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8), 3861-3876.
Xiao, W., Wang, T. H., Hasani, R., Chahine, M., Amini, A., Li, X., & Rus, D. (2023). Barriernet: Differentiable control barrier functions for learning of safe robot control. IEEE Transactions on Robotics, 39(3), 2289-2307.
So, O., Serlin, Z., Mann, M., Gonzales, J., Rutledge, K., Roy, N., & Fan, C. (2024, May). How to train your neural control barrier function: Learning safety filters for complex input-constrained systems. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 11532-11539). IEEE.
Wang, G., Ren, K., Morgan, A. S., & Hang, K. (2025). Caging in time: A framework for robust object manipulation under uncertainties and limited robot perception. The International Journal of Robotics Research, 02783649251343926.
Robot Compliance Control
Haddadin, S., & Shahriari, E. (2024). Unified force-impedance control. The International Journal of Robotics Research, 43(13), 2112-2141.
Iskandar, M., Ott, C., Albu-Schäffer, A., Siciliano, B., & Dietrich, A. (2023). Hybrid force-impedance control for fast end-effector motions. IEEE Robotics and Automation Letters, 8(7), 3931-3938.
Li, Y., Zheng, L., Wang, Y., Dong, E., & Zhang, S. (2025). Impedance Learning-based Adaptive Force Tracking for Robot on Unknown Terrains. IEEE Transactions on Robotics.
Hou, Y., Liu, Z., Chi, C., Cousineau, E., Kuppuswamy, N., Feng, S., ... & Song, S. (2024). Adaptive Compliance Policy: Learning Approximate Compliance for Diffusion Guided Control. arXiv preprint arXiv:2410.09309.
Xu, X., Hou, Y., Liu, Z., & Song, S. (2025). Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections. arXiv preprint arXiv:2506.16685.
Zhi, P., Li, P., Yin, J., Jia, B., & Huang, S. (2025). Learning Unified Force and Position Control for Legged Loco-Manipulation. arXiv preprint arXiv:2505.20829, CoRL 2025 Best Paper Award.
Geiger, N., Asfour, T., Hogan, N., & Lachner, J. (2025). Diffusion-Based Impedance Learning for Contact-Rich Manipulation Tasks. arXiv preprint arXiv:2509.19696.
Chen, W., Xue, H., Wang, Y., Zhou, F., Lv, J., Jin, Y., ... & Lu, C. (2025). ImplicitRDP: An End-to-End Visual-Force Diffusion Policy with Structural Slow-Fast Learning. arXiv preprint arXiv:2512.10946.
Aerial Manipulation
Wang, M., Chen, Z., Guo, K., Yu, X., Zhang, Y., Guo, L., & Wang, W. (2023). Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Transactions on Robotics, 40, 1242-1260.
He, G., Guo, X., Tang, L., Zhang, Y., Mousaei, M., Xu, J., ... & Shi, G. (2025). Flying Hand: End-Effector-Centric Framework for Versatile Aerial Manipulation Teleoperation and Policy Learning. arXiv preprint arXiv:2504.10334.
Li, G., Liu, X., & Loianno, G. (2024). Human-aware physical human-robot collaborative transportation and manipulation with multiple aerial robots. IEEE Transactions on Robotics.
Zeng, J., Gimenez, A. M., Vinitsky, E., Alonso-Mora, J., & Sun, S. Decentralized Aerial Manipulation of a Cable-Suspended Load Using Multi-Agent Reinforcement Learning. In 9th Annual Conference on Robot Learning (CoRL 2025).
Gupta, H., Guo, X., Ha, H., Pan, C., Cao, M., Lee, D., ... & Shi, G. (2025). UMI-on-Air: Embodiment-Aware Guidance for Embodiment-Agnostic Visuomotor Policies. arXiv preprint arXiv:2510.02614.
Sun, S., Wang, X., Sanalitro, D., Franchi, A., Tognon, M., & Alonso-Mora, J. (2025). Agile and Cooperative Aerial Manipulation of a Cable-Suspended Load. arXiv preprint arXiv:2501.18802. Science Robotics.
Duan, Y., Li, H., Wu, Y., Yu, W., Zhang, X., Shen, Y., ... & Zhang, Y. (2025). STDArm: Transferring Visuomotor Policies From Static Data Training to Dynamic Robot Manipulation. arXiv preprint arXiv:2504.18792, RSS 2025