#
# Cut-and-paste code below into Window above and Run
#
# IT1 SYS Model
#
merge.forecast <- function (fx,n=1) {
x <- splice(fx$pred,fx$forecast[[n]])
colnames(x) <- seriesNames(fx$data$output)
return(x)
}
AIC <- function(model) {informationTestsCalculations(model)[3]}
require(dse)
require(matlab)
#
# Measurement Matrix (Growth) (KOF + HDI - LU - EF - EG) (LU + KOF - N - CO2 - EG)
#
# EN.ATM.CO2E.KT EG.USE.COMM.KT.OE NY.GDP.MKTP.KD SL.TLF.TOTL.IN
#[1,] 0.339 0.3443 0.3484 0.3405
#[2,] -0.294 -0.0659 0.1960 0.0237
#[3,] -0.227 -0.2070 0.0294 -0.1931
# SP.POP.TOTL SL.UEM.TOTL.ZS KOF EF HDI
#[1,] 0.334 0.302 0.311 0.3345 0.343
#[2,] -0.127 -0.438 0.705 -0.2886 0.287
#[3,] -0.398 0.795 0.208 -0.0757 0.167
#
# Fraction of Variance
#[1] 0.897 0.941 0.973 0.992 0.997 0.999 0.999 1.000 1.000
#
f <- matrix( c( 0.9689753, 0.1802968,
0.0000000, 1.0000000
),byrow=TRUE,nrow=2,ncol=2)
h <- eye(1,2)
k <- f[1:2,1,drop=FALSE]
IT1 <- SS(F=f,H=h,K=k,z0=c( 0.1802968, 1.0000000),
output.names=c("IT1"))
tfplot(simulate(IT1,sampleT=150,noise=matrix(0,150,1),start=1950))
#