#
# Cut-and-paste code below into Window above and Run
#
#
# EU1 SYS Model
#
merge.forecast <- function (fx,n=1) {
x <- splice(fx$pred,fx$forecast[[n]])
colnames(x) <- seriesNames(fx$data$output)
return(x)
}
AIC <- function(model) {informationTestsCalculations(model)[3]}
require(dse)
require(matlab)
#
#Measurement Matrix (Growth) (CO2-LU) (LU + CO2 - Q - L -N)
#
# EN.ATM.CO2E.KT EG.USE.COMM.KT.OE NY.GDP.MKTP.KD SL.TLF.TOTL.IN
#[1,] 0.316 0.4313 0.433 0.442
#[2,] 0.747 0.2760 -0.223 -0.097
#[3,] 0.352 0.0753 -0.390 -0.342
# SP.POP.TOTL SL.UEM.TOTL.ZS
#[1,] 0.4458 0.364
#[2,] -0.0332 -0.552
#[3,] -0.2131 0.745
#
# Fraction of Variance
#[1] 0.828 0.972 0.996 0.999 1.000 1.000
#
f <- matrix( c( 0.964467, 0.1451668,
0.0000000, 1.0000000
),byrow=TRUE,nrow=2,ncol=2)
h <- eye(1,2)
k <- f[1:2,1,drop=FALSE]
EU1 <- SS(F=f,H=h,K=k,z0=c( 0.1451668, 1.0000000),
output.names=c("EU1"))
tfplot(simulate(EU1,sampleT=150,noise=matrix(0,150,1),start=1950))
#