2025
Diana Pradhan, Ajay Tanwar, Joshua Wong , Srividhya Parthasarathi, Gad M Frankel , Singh, V. Toroidal displacement of Klebsiella pneumoniae by Pseudomonas aeruginosa is a unique mechanism to avoid competition for iron.
mBio, 2025 Jun 11:e0114925.
Divakar Badal, Aloke Kumar, Varsha Singh, Danny Raj M. Dynamic fluid layer around immotile yeast colonies mediates the spread of bacteria.
Biophys J. 2025 Jun 4:S0006-3495(25)00249-8.
DOI: 10.1016/j.bpj.2025.04.022
2024
Siddiqui R., Mehta N., Ranjith G., Felix M.A., Chen C., Singh, V. Olfactory basis for essential amino acid perception during foraging in Caenorhabditis elegans.
https://doi.org/10.7554/eLife.101936.1
bioRxiv (Preprint) https://doi.org/10.1101/2024.07.11.603021
2023
Venkatesh, S., Siddiqui R., Sandhu, A., Ramani, M., Houston I.R., Watts J.L., Singh, V. Homeostatic control of stearoyl desaturase expression via patched-like receptor PTR-23 ensures the survival of C. elegans during heat stress.
PLoS Genet. 2023 18;19(12):e1011067
DOI: 10.1371/journal.pgen.1011067
Badal, D., Kumar, A., Singh, V., Danny, R. A dynamic fluid landscape mediates the spread of bacteria.
arXiv:2309.05351
DOI: 10.48550/arXiv.2309.05351
Ambreetha, S., Singh, V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa.
Microbiology 2023 169 (6), 001335
DOI: 10.1099/mic.0.001335
Venkatesh, S., Singh, V. Amphid Sensory neurons of Caenorhabditis elegans orchestrate its survival from broad classes of pathogens.
Life Science Alliance 2023 6 (8)
DOI: 10.26508/lsa.202301949
2022
Filipowicz, A., Aballay, A., Singh, V. Cellular and Organismal Responses to Infections in Caenorhabditis elegans. Elsevier
https://doi.org/10.1016/B978-0-12-821618-7.00043-2.
Prakash, D., Siddiqui R., Chalasani S., Singh, V. Pyrrole produced by Pseudomonas aeruginosa influences olfactory food choice of Caenorhabditis elegans.
bioRxiv (Preprint) https://doi.org/10.1101/2022.01.27.477966
2021
Badal, D., Jayarani, A.V., Kollaran, M.A., Prakash, D., Monisha P., Singh, V. Foraging signals promote swarming in starving Pseudomonas aeruginosa.
mBio 2021, 12(5):02033-21.
https://doi.org/10.1128/mBio.02033-21
Prakash, D., Akhil, M.S., Radhika, B., Venkatesan, R., Chalasani, S.H., Singh, V. 1-Undecene from Pseudomonas aeruginosa is an olfactory signal for flight or fight response in Caenorhabditis elegans.
EMBO J. 2021, e106938.
https://doi.org/10.15252/embj.2020106938 (OPEN ACCESS)
Sandhu, A., Sheokand, R., Singh V. LIR-1 and PDTF-1 regulate the permeability barrier function of the C. elegans cuticle.
microPublication Biology 2021.
DOI: 10.17912/micropub.biology.000434.
Sandhu, A., Badal, D., Sheokand, R., Tyagi, S., Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. GENETICS 2021, 217(3):iyaa047.
https://doi.org/10.1093/genetics/iyaa047
(Also see the cover page of March 2021 issue of GENETICS at https://academic.oup.com/genetics/issue/217/3)
Venkatesh, S.R., Singh, V. G protein-coupled receptors: The choreographers of innate immunity in Caenorhabditis elegans.
PLoS Pathog 2021, 17(1): e1009151.
https://doi.org/10.1371/journal.ppat.1009151
2020
Sandhu, A., Singh, V. Total triglyceride quantification in C. elegans.
Bio-Protocol 2020, 10(22): e3819.
Dasgupta, M., Bojanala, N., Shashikanth, M., Singh, V. Caenorhabditis elegans larvae undergo early developmental arrest on a diet of Gram-positive bacterium Enterococcus faecalis. microPublication Biology 2020. https://doi.org/10.17912/micropub.biology.000321
Dixit, A., Singh, V. The brain-gut axis of longevity.
Aging (Albany NY) 2020,12(18):17754-17755. doi: 10.18632/aging.103996. Epub ahead of print. PMID: 32986014; PMCID: PMC7585115.
Prakash, P., Abdulla A.Z., Singh, V., Varma, M.M. Swimming statistics of cargo-loaded single bacteria.
Soft Matter 2020, 100: 062609.
Dasgupta, M., Shashikanth, M., Gupta, A., Sandhu, A., De, A., Javed, S., Singh, V. NHR-49 transcription factor regulates immuno-metabolic response and 1 survival of Caenorhabditis elegans during Enterococcus faecalis infection.
Infec Immun. 2020, 88(8):e00130-20.
https://doi.org/10.1128/IAI.00130-20
Dixit, A., Sandhu, A., Modi, S., Shashikanth, M., Koushika, S., Watts, J., Singh, V. Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in C. elegans. AGING CELL 2020, 19(6):e13160
https://doi.org/10.1111/acel.13160
Badal, D., Jayarani, A.V., Kollaran, M.A., Kumar, A., Singh, V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J. Med. Microbiol. 2020, 69(6):e001199 (online access) EDITORS CHOICE
https://doi.org/10.1099/jmm.0.001199
Jose, R., Singh, V. Swarming in bacteria: A tale of plasticity in motility behaviour. IISc J. 2020, 100 (3).(online access)
DOI: 10.1007/s41745-020-00177-2.
Kotian, B., Abdulla, A., Hithysini, K., Harkar, S., Joge, S., Mishra, A., Singh, V., Varma, M.M. Active modulation of surfactant-driven flow instabilities by swarming bacteria. Phys Rev E. 2020, 101(1):012407.
2019
Prakash, P., Abdulla, A., Singh, V., Varma, M.M. Tuning the torque-speed characteristics of the bacterial flagellar motor to enhance swimming speed. Phys Rev E. 2019, 100, 62609.
Kollaran, M.A., Joge, S., Harshitha, K., Badal, D., Prakash, D., Mishra, A., Varma, M.M. and Singh, V. Context-Specific Requirement of Forty-Four Two-Component Loci in Pseudomonas aeruginosa Swarming. iScience. 2019 Mar 29;13: 305-317.
https://doi.org/10.1016/j.isci.2019.02.028
(preprint bioRxiv, p.445015. doi: 10.1101/445015).
Chakrabortty, T., Suman, A., Gupta A, Singh, V., Varma, M.M. Null model exhibiting synchronized dynamics in uncoupled oscillators. Phys Rev E. 2019, 99: 52410.
2017
Rasmi, C,K., Shirlekar, K., Manjithaya, R., Singh, V., Mondal, P.P. Integrated Light sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of model organisms. Appl Phys Lett. 2017,111: 243702.
Gupta, A., Singh, V., (2017). GPCR Signaling in C. elegans and Its Implications in Immune Response. In Advances in immunology (Vol. 136, pp. 203-226). Academic Press. [Book Chapter], doi: 10.1016/bs.ai.2017.05.002
Sun, J., Aballay, A., Singh, V., (2015). Cellular responses to infections in Caenorhabditis elegans. In Organizational Cell Biology (pp. 845-852). Elsevier Inc. [Book Chapter]. doi:10.1016/B978-0-12-394447-4.20074-6
Singh, V., Aballay, A., (2012). ER stress pathway required for immune homeostasis is neurally controlled by arrestin-1. Journal of Biological Chemistry pp.jbc-M112. doi: 10.1074/jbc.M112.398362
Sun, J., Singh, V., Kajino-Sakamoto, R., Aballay, A. Neuronal GPCR controls innate immunity by regulating non-canonical unfolded protein response genes. Science 2011, 332(6030):729-32. doi: 10.1126/science.1203411.
Singh, V., Aballay, A. Regulation of DAF-16-mediated innate immunity in C. elegans. Journal of Biological Chemistry 2009, pp.jbc-M109. doi:10.1074/jbc.M109.060905
Styer, K.L., Singh, V., Macosko, E., Steele, S.E., Bargmann, C.I., Aballay, A. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008, 322(5900), pp.460-464. doi:10.1126/science.1163673
Singh, V., Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proceedings of the National Academy of Sciences 2006, 103(35), pp.13092-13097. doi:10.1073/pnas.0604050103
Singh, V., Aballay, A. Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. Cell cycle 2006, 5(21), pp.2443-2446. doi:10.4161/cc.5.21.3434
See Google scholar page for a full list of publications at https://scholar.google.com/citations?hl=en&user=TNeCGC8AAAAJ&view_op=list_works