Informations générales
Le séminaire a alternativement lieu à Sorbonne Université (Jussieu, Paris) et à l'Ecole Polytechnique (Palaiseau), un vendredi par mois.
Pour recevoir les annonces, merci d'écrire à cyril.demarche(at)imj-prg.fr (remplacer "(at)" par @).
L'ancien site du séminaire se trouve ici.
Nous remercions l'équipe Topologie et Géométrie Algébrique de l'Institut Mathématique de Jussieu, le Centre de Mathématiques Laurent Schwartz de l'Ecole Polytechnique et le réseau thématique du CNRS de théorie des nombres, qui financent le séminaire.
Exposés à venir
15 novembre 2024 (Ecole Polytechnique, salle de séminaire du CMLS)
Si vous avez besoin d'aide pour atteindre la salle de séminaire, vous pouvez appeler Diego au 07 x 55 92 14, où x est l'ordre minimal d'un groupe simple non abélien.
11h: Michael Stoll (Université de Bayreuth).
Conjectural asymptotics of prime orders of points on elliptic curves over number fields
Define, for a positive integer $d$, $S(d)$ to be the set of all primes $p$ that occur as the order of a point $P \in E(K)$ on an elliptic curve $E$ defined over a number field $K$ of degree $d$. We discuss how some plausible conjectures on the sparsity of newforms with certain properties would allow us to deduce a fairly precise result on the asymptotic behavior of $\max S(d)$ as $d$ tends to infinity.
This is joint work with Maarten Derickx.
14h: Adam Morgan (University of Cambridge).
Hasse principle for intersections of two quadrics via Kummer surfaces
I will discuss recent work with Skorobogatov in which we establish the Hasse principle for a broad class of degree 4 del Pezzo surfaces (including all those with irreducible characteristic polynomial), conditional on finiteness of Tate--Shafarevich groups of abelian surfaces. A corollary of this work is that the Hasse principle holds for smooth complete intersections of two quadrics in P^n for n\geq 5, conditional on the same conjecture. This was previously known by work of Wittenberg assuming both finiteness of Tate--Shafarevich groups of elliptic curves and Schinzel's hypothesis (H).
I will also discuss forthcoming work with Lyczak which, again under the Tate--Shafarevich conjecture, shows that the Brauer--Manin obstruction explains all failures of the Hasse principle for certain degree 4 del Pezzo surfaces about which nothing was known previously.
15h30: Emiliano Ambrosi (Université de Strasbourg).
Un critère d'Artin et Mumford pour les fibrés en coniques en caractéristique 2
Dans les années 70, Artin et Mumford ont montré un critère d'irrationalité pour un fibré en coniques sur un corps de caractéristique différente de 2 et ils ont construit des exemples sur lesquels il peut être utilisé.
Dans un travail en cours avec Giuseppe Ancona, on prouve un analogue en caractéristique 2 et on trouve des exemples auxquels s'applique.
13 décembre 2024 (Sorbonne Université)
Konstantinos Kartas (Institut Max-Planck, Bonn).
Azur Đonlagić (Université Paris-Saclay).
Brauer-Manin obstructions on homogeneous spaces of affine algebraic groups over global function fields
Given a family of varieties X over a global field k, one is interested in the sufficiency of the Brauer-Manin obstruction to explain the possible failure of the Hasse principle and weak/strong approximation of adelic points on X. Let G be an affine algebraic group G over k, and our family of interest - the principal homogeneous spaces X of G.
In 1981, Sansuc proved this sufficiency for connected G over a number field k by reduction to the case of a torus and an application of Poitou-Tate duality. Since then, arithmetic duality theorems have proven useful in the study of similar problems.
In this lecture, we briefly recall the significant generalization by Rosengarten of the Poitou-Tate theory to all commutative affine algebraic groups G over a global field k of any characteristic. Then we explain how this theory allows us to extend the stated Brauer-Manin results to (the principal homogeneous spaces of) all such G, not necessarily smooth or connected, highlighting the difficulties which appear in the case when k is a global function field.
10 janvier 2025 (Sorbonne Université)
Zhizhong Huang (Chinese Academy of Sciences, Beijing).
Raman Parimala (Emory University, Atlanta).