Informations générales
Le séminaire a lieu à Sorbonne Université (Jussieu, Paris), un vendredi par mois.
Pour recevoir les annonces, merci d'écrire à cyril.demarche(at)imj-prg.fr (remplacer "(at)" par @).
L'ancien site du séminaire se trouve ici.
Nous remercions l'équipe Topologie et Géométrie Algébrique de l'Institut Mathématique de Jussieu et le réseau thématique du CNRS de théorie des nombres, qui financent le séminaire.
Exposés à venir
10 octobre 2025 (salle 16-26-113)
14h: Melvyn El Kamel Meyrigne (Ecole Polytechnique).
Tate-Shafarevich group of a constant group of multiplicative type over a finite extension of Q((x_1,...,x_n)).
Let K be a finite extension of Q((x_1,...,x_n)) and let R be the integral closure of Q[[x_1,...,x_n]] in K with residue field k. Consider a group of multiplicative type G defined over K. We define the Tate-Shafarevich group with respect to the points of codimension 1 of Spec(R). We show the finiteness of a quotient of the Tate-Shafarevich group when G comes from a group of multiplicative type G_k defined over k provided that a geometrical hypothesis on the special fiber of a regular model of Spec(R) is satisfied. We then prove that the Tate-Shafarevich group is trivial when the ring of integers R is regular. Finally, we show how the arguments used can be adapted to work over other kinds of fields.
15h30: Harry Shaw (University of Bath).
The existence of quartic del Pezzo surfaces over global function fields which do not admit a quadratic point.
Creutz and Viray have recently proven the existence of quartic del Pezzo surfaces over Q which do not admit a quadratic point, despite every such surface admitting a quadratic point over any local field. We prove the analogous result over global function fields. This is joint work with Giorgio Navone, Katerina Santicola and Haowen Zhang.
7 novembre 2025
M. Archita (Université d'Anvers).
Zhenghui Li (Sorbonne Université).
5 décembre 2025
Sho Tanimoto (Université de Nagoya).
Lucas Lagarde (Université Sorbonne Paris Nord).