2024
[39] Nakayama Y., Malyarenko A., Zhang H., Wnag O., Auger M., Nie F., Fenty I., Mazloff, M., Armin, K., Menemenlis D., Evaluation of MITgcm-based ocean reanalysis for the Southern Ocean, Geoscientific Model Development, 2024.
[38] McCormack F.. Cook S.,, Goldberg D. N., Nakayama Y., Seroussi H.,, Nias I., An L., Slater D., Hattermann T., Commentary: The case for a Framework for UnderStanding Ice-Ocean iNteractions (FUSION) in the Antarctic-Southern Ocean System, Elementa: Science of the Anthropocene, 12(1), 2024.
[37] Lin Y., Nakayama Y., Liang K., Huang Y., Chen D., Yang Q., A dataset of the daily edge of each polynya in the Antarctic, Scientific Data, 11(1), 1006, 2024.
[36] Mizuta G., Ohshima K. I., Takatsuka T., Kitade Y., Fujii M., Nakayama Y., Ikehara M., Circulation and production of Cape Darnley Bottom Water on the continental slope, Deep Sea Research Part 1, 211, 104362, 2024.
[35] De Rydt J.,Jourdain N., Nakayama Y., van Caspel M., Timmermann R., Mathiot P., Asay-Davis X. S., Seroussi H., Dutrieux P., Galton-Fenzi B., Holland D., Reese R.., Experimental design for the second marine ice sheet and ocean model intercomparison project-phase 2, MISOMIP2, Geoscientific Model Development, 17(18), 7105-7139, 2024.
[34] Park T.*, Nakayama Y., Nam S., Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting, Nature Communications, 15, 2946, 2024. (Selected as editor’s highlight)
[33] Nakayama Y., Wongpan P., Greenbaum J. S., Yamazaki K., Aoki S., How can helicopters help us determine the health of Antarctica's oceans?, Frontiers for Young Minds, 12:1080545, 2024.
[32] Hyogo S.*, Nakayama Y., Mensa V., Modeling Ocean Circulation and Ice Shelf Melt in the Bellingshausen Sea, Journal of Geophysical Research: Oceans, 129(3), e2022JC019275, 2024.
[31] Shrestha K., Manucharyan G. E., Nakayama Y., et al., Submesoscale Variability and Basal Melting in Ice Shelf Cavities of the Amundsen Sea, Geophysical Research Letters, 51(3), e2023GL107029, 2024.
2023
[30] Silvano A., Purkey S., Arnold G., Castagno P., Stwart A. L., Rintoul S. R., Foppert A., Gunn K. L., Herraiz-Borreguero L., Aoki S., Nakayama Y., Naveira Garabato A. C.,Spingys C., Akhoudas C. H., Sallée J. B., de Lavergne C.. Abrahamsen E. P., Meijers A. J. S., Meredith M. P., Zhou S., Tamura T., Yamazaki K., Ohshima K. I., Falco P., Budillon G., Hattermann T., Janout M. A., Llanillo P., Bowen M. M., Darelius E., Østerhus S., Nicholls K. W., Stevens C., Fernanderz D., Cimoli L., Jacobs S. S., Morrison A. K., Hogg A. M., Haumann A. F.Mashayek A., Wang Z., Kerr R., Williams G. D., Lee W. S., Observing Antarctic Bottom Water in the Southern Ocean, Frontiers Marine Science, 10, 2023.
[29] . Poinelli M.*, Nakayama Y., Vizacino M., Riva R., Schodlok M., Larour E., Ice-Front Retreat Controls on Ocean Dynamics Under Larsen C Ice Shelf, Antarctica, Geophysical Research Letters, 50(18), e2023GL104588, 2023.
[28] Nakayama Y., Greenbaum J. S., Wongpan P., Yamazaki K., Noguchi T., Simizu D., Kashiwase H., Blankenship D. D., Tamura T., Aoki S., Helicopter-based ocean observations capture broad ocean heat intrusions towards the Totten ice shelf, Geophysical Research Letters, 50(17), e2022GL097864.
[27] Poinelli M., Nakayama Y., Vizacino M., Riva R., Schodlok M., Larour E., Tidally-driven ocean dynamics of the Larsen C Ice Shelf, Geophysical Research Letters, in press.
[26] Tamura T. P., Nomura D., Hirano D., Tamura T., Kikuchi M. Hashida G., Makabe R., Ono K., Ushio S., Yamazaki K., Nakayama Y., Sasaki H., Murase H. Aoki S., Impact of basal melting of the Totten Ice Shelf on marine biogeochemical components in Sabrina Coast, East Antarctica, Global Biogeochemical Cycles, in press.
[25] Hirano D., Tamura T., Kusahara K., Fujii M., Yamazaki K., Nakayama Y., Ono K., Itaki T., Aoyama Y., Simizu D., Mizobata K., Ohshima K. I., Nogi Y., Rintoul S., van Wijk E., Gremmbaum J. S., Blankenship D., Aoki S., On-shelf circulation of warm water toward the Totten ice shelf, East Antarctica, Nature Communications, 14 (1), 4955, 2023.
[24] Hay H. C. F. C., Fenty I., Pappalorado R. T., Nakayama Y., Nonlinear turbulent drag at the ice-ocean interface of Europa in simulations of rotating convection: Implications for asynchronous rotation of the ice shell, Journal of Geophysical Research: Planets, in press.
[23] Li Y., Yang Q., Shi Q., Nakayama Y., Chen D., A volume-conserved method in estimating sea-ice production in the Antarctic polynyas, Geophysical Research Letters, 50(4), e2022GL101859, 2023.
2022
[22] Dotto T. S., Heywood K. J., Hall R. A., Scambos T. A., Zheng Y., Nakayama Y., Hyogo S.*, Snow T., Wåhlin A. K., Wild C., Truffer M., Muto A., Pettit E., Interannual meltwater variability beneath Thwaites Ice Shelf, West Antarctica, driven by atmospheric forcing, Nature Communications, 13, 1, 1-13, 2022.
[21] Nakayama Y., Hirata T.*, Goldberg D., Greene C., What Determines the Shape of a Pine-Island-Like Ice Shelf?, Geophysical Research Letters, 49, e2022GL101272, 2022.
[20] Dundas V., Darelius E., Daae K., Steiger N., Nakayama Y., Fer I., and Kim T., Hydrography, circulation, and response to atmospheric forcing in the vicinity of the central Getz Ice Shelf, Amundsen Sea, Antarctica, Ocean Science, 18, 1339-1359, 2022.
2021
[19] Nakayama Y., Cai C., and Seroussi H., Impact of subglacial freshwater discharge on Pine Island Ice Shelf, Geophysical Research Letters, 48, e2021GL093923.
[18] Nakayama Y., Greene C. A., Paolo F. S., Mensah V., Zhang H., Kashiwase H., Simizu D., Greenbaum J. S., Blankenship D. D., Abe-Ouchi A., and Aoki S., Antarctic Slope Current modulates ocean heat intrusions towards Totten Glacier, Geophysical Research Letters, 48, e2021GL094149.
[17] Pelle T., Morlighem M., Nakayama Y., Seroussi H., Widespread grounding line retreat of Totten Glacier, East Antarctica, driven by sub-ice shelf ocean circulation over the 21st century, Geophysical Research Letters, 48, e2021GL093213.
[16] Nakayama Y., Menemenlis D., Wang O., Hong Z., Fenty I., Nguyen A. T., Development of adjoint-based ocean state estimation for the Amundsen and Bellingshausen seas and ice shelf cavities using MITgcm–ECCO (66j), Geoscientific Model Development, 14(8), 4909-4924.
[16] Yamazaki K., Aoki S., Katsumata K., Hirano D., Nakayama Y., A multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica, Science Advances, 7 (24).
[15] Mensa V.*, Nakayama Y., Fujii M., Nogi Y., Ohshima K. I., Dense water downslope flow and AABW production in a numerical model: Sensitivity to horizontal and vertical resolution in the region off Cape Darnley Polynya, Ocean Modeling, 101843.
2020
[14] Nakayama Y., Investigation of ice shelf ocean interaction in the Amundsen Sea using numerical modeling and ocean state estimates., Oceanography in Japan, 29(6), 233-244.
[13] Nakayama Y., Timmermann R., & Hellmer H. H., Impact of West Antarctic ice shelf melting on Southern Ocean hydrography., The Cryosphere, 14(7), 2205-2216.
2019
[12] Nakayama Y., Manucharyan G., Zhang H., Dutrieux P., Torres H. S., Klein P., Seroussi H., Schodlok M., Rignot E., & Menemenlis D., Pathways of ocean heat towards Pine Island and Thwaites grounding lines., Scientific reports, 9(1), 1-9.
2018
[11] Nakayama Y., Menemenlis D., Zhang H., Schodlok M., & Rignot E., Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves., Nature communications, 9(1), 1-9.
2017
[10] Asay-Davis X. S., Jourdain N. C., & Nakayama Y., Developments in simulating and parameterizing interactions between the Southern Ocean and the Antarctic ice sheet., Current Climate Change Reports, 3(4), 316-329.
[9] Cai C., Rignot E., Menemenlis D., & Nakayama Y., Observations and modeling of ocean‐induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland., Geophysical Research Letters, 44(16), 8396-8403.
[8] Nakayama Y., Menemenlis D., Schodlok M., & Rignot E., Amundsen and Bellingshausen Seas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters., Journal of Geophysical Research: Oceans, 122(8), 6180-6195.
[7] Seroussi H., Nakayama Y., Larour E., Menemenlis D., Morlighem M., Rignot E., & Khazendar A., Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation., Geophysical Research Letters, 44(12), 6191-6199.
2015
[6] Nakayama Y., Timmermann R., Schröder M., & Hellmer H. H., Data analysis and modeling of the Amundsen Sea embayment., Towards an Interdisciplinary Approach in Earth System Science, 131-136.
2014
[5] Nakayama Y., Timmermann R., Rodehacke C. B., Schröder M., & Hellmer H. H., Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas., Geophysical Research Letters, 41(22), 7942-7949.
[4] Nakayama Y., Timmermann R., Schröder M., & Hellmer H. H., On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf., Ocean Modelling, 84, 26-34.
[3] Nakayama Y., Ohshima K. I., Matsumura Y., Fukamachi Y., & Hasumi H., A numerical investigation of formation and variability of Antarctic Bottom Water off Cape Darnley, East Antarctica., Journal of Physical Oceanography, 44(11), 2921-2937.
2013
[2] Nakayama Y., Schröder M., & Hellmer H. H., From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen Shelf., Deep Sea Research Part I: Oceanographic Research Papers, 77, 50-62.
2012
[1] Nakayama Y., Ohshima K. I., & Fukamachi Y., Enhancement of sea ice drift due to the dynamical interaction between sea ice and a coastal ocean., Journal of physical oceanography, 42(1), 179-192.