There has been growing interest in making deep neural networks robust for real-world applications. Challenges arise when models receive inputs drawn from outside the training distribution. For example, a neural network tasked with classifying handwritten digits may assign high confidence predictions to cat images. Anomalies are frequently encountered when deploying ML models in the real world. Generalization to unseen and worst-case inputs is also essential for robustness to distributional shift. Well-calibrated predictive uncertainty estimates are indispensable for many machine learning applications, such as self-driving cars and medical diagnosis systems. In order to have ML models reliably predict in open environment, we must deepen technical understanding in the following areas:
This workshop will bring together researchers and practitioners from the machine learning communities, and highlight recent work that contribute to address these challenges. Our agenda will feature contributed papers with invited speakers. Through the workshop we hope to help identify fundamentally important directions on robust and reliable deep learning, and foster future collaborations. We invite the submission of papers on topics including, but not limited to:
Please see the call for papers for formatting instructions and deadlines.
Travel awards are kindly sponsored by Google and DeepMind.