Peer-reviewed articles, books and book chapters
38. Delcourt CJF, Rogers BM, Akhmetzyanov L, Izbicki B, Scholten RC, Shestakova TA, van Wees D, Mack M, Sass-Klaassen U, Veraverbeke S (2025). Carbon emissions from fires in eastern Siberian larch forests. Global Change Biology 31, e70247. DOI: 10.1111/gcb.70247.
37. Talucci AC, Loranty MM, Holloway JE, Rogers BM, Alexander HD, Baillargeon N, Baltzer JL, Berner LT, Breen A, Brodt L, Buma B, Dean J, Delcourt CJF, Diaz LR, Dieleman CM, Douglas TA, Frost GV, Gaglioti BV, Hewitt RE, Hollingsworth T, Jorgenson MT, Lara MJ, Loehman RA, Mack MC, Manies KL, Minions C, Natali SM, O'Donnell JA, Olefeldt D, Paulson AK, Rocha AV, Saperstein LB, Shestakova TA, Sistla S, Sizov O, Soromotin A, Turetsky MR, Veraverbeke S, Walvoord MA. Permafrost-wildfire interactions: Active layer thickness estimates for paired burned and unburned sites in northern high-latitudes. Earth System Science Data 17, 2887–2909. DOI: 10.5194/essd-17-2887-2025.
Data available in Talucci AC, Loranty MM, Holloway JE, Rogers BM, Alexander HD, Baillargeon N, Baltzer JL, Berner LT, Breen A, Brodt L, Buma B, Dean J, Delcourt CJF, Diaz LR, Dieleman CM, Douglas TA, Frost GV, Gaglioti BV, Hewitt RE, Hollingsworth T, Jorgenson MT, Lara MJ, Loehman RA, Mack MC, Manies KL, Minions C, Natali SM, O'Donnell JA, Olefeldt D, Paulson AK, Rocha AV, Saperstein LB, Shestakova TA, Sistla S, Sizov O, Soromotin A, Turetsky MR, Veraverbeke S, Walvoord MA (2024). FireALT dataset: estimated active layer thickness for paired burned unburned sites measured from 2001-2023 [Data set]. Arctic Data Center, v1. DOI: 10.18739/A2RN3092P.
36. Mackey B, Hugh S, Shestakova TA, Rogers BM, Rattis L (2025). Insights into mapping tropical primary wet forests in the Amazon basin from satellite-based time series metrics of canopy stability. Discover Conservation 2, 5. DOI: 10.1007/s44353-025-00023-5.
35. Watts JD, Potter S, Rogers BM, Virkkala AM, Fiske G, Arndt KA, Burrell A, Butler K, Gerlt B, Grayson J, Shestakova TA, Du J, Kim Y, Parmentier FJW, Natali SM (2025). Regional hotspots of change in northern high latitudes informed by observations from space. Geophysical Research Letters 52, e2023GL108081. DOI: 10.1029/2023GL108081.
Data available in Watts JD, Potter S, Rogers BM, Virkkala AM, Fiske G, Arndt KA, Burrell A, Natali SM, Butler K, Gerlt B, Grayson J, Shestakova TA, Du J, Kim Y (2024). Trends of thermal, wetness, and vegetative change in the circumpolar Arctic [Data set]. ORNL DAAC, Oak Ridge National Laboratory Distributed Active Archive Center, v1. DOI: 10.3334/ORNLDAAC/2322.
An interactive app has been developed to dive deeper into the data and trends.
34. Diaz LR, Delcourt CJF, LangerM, Loranty MM, Rogers BM, Scholten RC, Shestakova TA, Talucci AC, Vonk JE, Wangchuk S, Veraverbeke S. Environmental drivers and remote sensing proxies of post-fire thaw depth in Eastern Siberian larch forests (2024). Earth System Dynamics 15, 1459–1482. DOI: 10.5194/esd-15-1459-2024.
Data available in Delcourt CJF, Rogers BM, Akhmetzyanov L, Izbicki B, Scholten RC, Shestakova TA, van Wees D, Mack MC, Sass-Klaassen U, Veraverbeke S (2024). Burned and unburned boreal larch forest site data, Northeast Siberia [Data set]. Zenodo, v1. DOI: 10.5281/zenodo.10840088.
33. Shestakova TA, Rogers BM, Mackey B, Hugh S, Norman P, Kukavskaya EA (2024). Tracking ecosystem stability across boreal Siberia. Ecological Indicators 169, 112841. DOI: 10.1016/j.ecolind.2024.112841.
32. Shestakova TA, Sin E, Gordo J, Voltas J (2024). Tree-ring isotopic imprints on time series of reproductive effort indicate warming-induced co-limitation by sink and source processes in stone pine. Tree Physiology 44, tpad147. DOI: 10.1093/treephys/tpad147.
Commented in Camarero JJ, González de Andrés E (2024). Deciphering carbon source–sink dynamics in masting tree species using tree-ring isotopes. Tree Physiology 44, tpae026. DOI: 10.1093/treephys/tpae026.
Data available in Shestakova TA, Sin E, Gordo J, Voltas J (2024). Replication data for: Cone yield, ring-width and isotopic records for the analysis of tree-ring isotopic imprints on time-series of reproductive effort in stone pine (Pinus pinea L.) [Data set]. CORA, Repositori de Dades de Recerca, v1. DOI: 10.34810/data976.
31. Voltas J, Amigó R, Shestakova TA, di Matteo G, Díaz R, Zas R (2024). Phylogeography and climate shape the quantitative genetic landscape and range-wide plasticity of a prevalent conifer. Ecological Monographs 94, e1596. DOI: 10.1002/ecm.1596.
Data available in Voltas J, Amigó R, Shestakova TA, di Matteo G, Díaz R, Zas R (2023). Replication Data for: Multienvironment records for the analysis of the quantitative genetic landscape and range-wide plasticity of a prevalent conifer (Pinus pinaster Ait.) [Data set]. CORA, Repositori de Dades de Recerca, v1. DOI: 10.34810/data871.
30. Williams JW, Taylor A, Tolley KA, Provete DB, Correia R, Guedes TB, Farooq H, Li Q, Pinheiro HT, Liz AV, Luna LW, Matthews TJ, Palmeirim AF, Puglielli G, Rivadeneira MM, Robin VV, Schrader J, Shestakova TA, Tukiainen H, von der Heyden S, Zizka A (2023). Shifts to open access with high article processing charges hinder research equity and careers. Journal of Biogeography 50, 1485–1489. DOI: 10.1111/jbi.14697.
29. Rogers BM, Mackey B, Shestakova TA, Keith H, Young V, Kormos CF, DellaSala DA, Dean J, Birdsey R, Bush G, Houghton RA, Moomaw WR (2022). Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. Frontiers in Forests and Global Change 5, 929281. DOI: 10.3389/ffgc.2022.929281.
28. Foster AC, Wang JA, Frost GV, Davidson SJ, Hoy E, Turner KW, Sonnentag O, Epstein H, Berner LT, Armstrong AH, Kang M, Rogers BM, Campbell E, Miner KR, Orndahl KM, Bourgeau-Chavez L, Lutz DA, French N, Chen D, Du J, Shestakova TA, Shuman JK, Tape K, Virkkala A-M, Potter C, Goetz S (2022). Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses. Environmental Research Letters 17, 113001. DOI: 10.1088/1748-9326/ac98d7.
27. Shestakova TA, Mackey B, Hugh S, Dean J, Kukavskaya EA, Laflamme J, Shvetsov EG, Rogers BM (2022). Mapping forest stability within major biomes using canopy indices derived from MODIS time series. Remote Sensing 14, 3813. DOI: 10.3390/rs14153813.
26. Lombardi E, Shestakova TA, Santini F, Resco de Dios V, Voltas J (2022). Harnessing tree-ring phenotypes to disentangle gene by environment interactions and their climate dependencies in a circum-Mediterranean pine. Annals of Botany 130, 509–523. DOI: 10.1093/aob/mcac092.
Data available in Lombardi E, Shestakova TA, Santini F, Resco de Dios V, Voltas J (2022). Differential tree growth explained by SNP loci and climate in a circum-Mediterranean pine [Data set]. CORA, Repositori de Dades de Recerca, v1. DOI: 10.34810/data228.
25. Camarero JJ, Shestakova TA, Pizarro M (2022). Threshold responses of canopy cover and tree growth to drought and Siberian silk moth outbreak in southern taiga Picea obovata forests. Forests 13, 768. DOI: 10.3390/f13050768.
24. Burrell AL, Sun Q, Baxter R, Kukavskaya EA, Zhila S, Shestakova TA, Rogers BM, Kaduk J, Barrett K (2022). Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Science of The Total Environment 831, 154885. DOI: 10.1016/j.scitotenv.2022.154885.
23. González de Andrés E, Shestakova TA, Scholten RC, Delcourt CJF, Gorina NV, Camarero JJ (2022). Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions. Agricultural and Forest Meteorology 312, 108712. DOI: 10.1016/j.agrformet.2021.108712.
22. Shvetsov E, Kukavskaya E, Shestakova TA, Laflamme J, Rogers BM (2021). Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region. Environmental Research Letters 16, 115007. DOI: 10.1088/1748-9326/ac2e37.
Data available in Shvetsov E, Kukavskaya E, Shestakova TA, Laflamme J, Rogers BM (2021). Data for: Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region [Data set]. GitHub repository. URL: https://github.com/data-store-a/angara-data.
21. Shestakova TA, Camarero JJ, Voltas J (2021). Are global forests performing in sync? The need to account for spatiotemporal biases in tree-ring records. Journal of Biogeography 48, 2961–2965. DOI: 10.1111/jbi.14249.
20. Ferrio JP, Shestakova TA, del Castillo J, Voltas J (2021). Oak competition dominates interspecific interactions in growth and water-use efficiency in a mixed pine–oak Mediterranean forest. Forests 12, 1093. DOI: 10.3390/f12081093.
19. Delcourt CJF, Combee A, Izbicki B, Mack M, Maximov T, Petrov R, Rogers BM, Scholten RC, Shestakova TA, van Wees D, Veraverbeke S (2021). Evaluating the differenced Normalized Burn Ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian larch forests. Remote Sensing 13, 2311. DOI: 10.3390/rs13122311.
18. Shestakova TA, Mutke S, Gordo J, Camarero JJ, Sin E, Pemán J, Voltas J (2021). Weather as main driver for masting and stem growth variation in stone pine supports compatible timber and nut co-production. Agricultural and Forest Meteorology 298–299, 108287. DOI: 10.1016/j.agrformet.2020.108287.
Data available in Shestakova TA, Mutke S, Gordo J, Camarero JJ, Sin E, Pemán J, Voltas J (2020). Data for: Weather as main driver for masting and stem growth variation in stone pine supports compatible timber and nut co-production [Data set]. Mendeley Data, v1. DOI: 10.17632/hc5rb8tz4y.1.
17. Shestakova TA, Martínez-Sancho E (2021). Stories hidden in tree rings: a review on the application of stable carbon isotopes to dendrosciences. Dendrochronologia 65, 125789. DOI: 10.1016/j.dendro.2020.125789.
16. Santini F, Shestakova TA, Dashevskaya S, Notivol E, Voltas J (2020). Dendroecological and genetic insights for future management of an old-planted forest of the endangered Mediterranean fir Abies pinsapo. Dendrochronologia 63, 125754. DOI: 10.1016/j.dendro.2020.125754.
15. Patsiou TS, Shestakova TA, Klein T, di Matteo G, Sbay H, Chambel MR, Zas R, Voltas J (2020). Intraspecific responses to climate reveal nonintuitive warming impacts on a widespread thermophilic conifer. New Phytologist 228, 525–540. DOI: 10.1111/nph.16656.
14. Voltas J, Aguilera M, Gutiérrez E, Shestakova TA (2020). Shared drought responses among conifer species in the middle Siberian taiga are uncoupled from their contrasting water-use efficiency trajectories. Science of The Total Environment 720, 137590. DOI: 10.1016/j.scitotenv.2020.137590.
13. Shestakova TA, Voltas J, Saurer M, Berninger F, Esper J, Andreu‐Hayles L, Daux V, Helle G, Leuenberger M, Loader NJ, Masson‐Delmotte V, Saracino A, Waterhouse JS, Schleser GH, Bednarz Z, Boettger T, Dorado‐Liñán I, Filot M, Frank D, Grabner M, Haupt M, Hilasvuori E, Jungner H, Kalela‐Brundin M, Krąpiec M, Marah H, Pawełczyk S, Pazdur A, Pierre M, Planells O, Pukienė R, Reynolds‐Henne CE, Rinne‐Garmston (Rinne) KT, Rita A, Sonninen E, Stiévenard M, Switsur VR, Szychowska‐Kra̧piec E, Szymaszek M, Todaro L, Treydte K, Vitas A, Weigl M, Wimmer R, Gutiérrez E (2019). Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Global Ecology and Biogeography 28, 1295–1309. DOI: 10.1111/geb.12933.
12. Shestakova TA, Gutiérrez E, Valeriano C, Lapshina E, Voltas J (2019). Recent loss of sensitivity to summer temperature constrains tree growth synchrony among boreal Eurasian forests. Agricultural and Forest Meteorology 268, 318–330. DOI: 10.1016/j.agrformet.2019.01.039.
11. Santini F, Ferrio JP, Hereş AM, Notivol E, Piqué M, Serrano L, Shestakova TA, Sin E, Vericat P, Voltas J (2018). Scarce population genetic differentiation but substantial spatiotemporal phenotypic variation of water-use efficiency in Pinus sylvestris at its western distribution range. European Journal of Forest Research 137, 863–878. DOI: 10.1007/s10342-018-1145-9.
10. Voltas J, Shestakova TA, Patsiou T, di Matteo G, Klein T (2018). Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. Forest Ecology and Management 424, 205–215. DOI: 10.1016/j.foreco.2018.04.058.
9. Shestakova TA, Gutiérrez E, Voltas J (2018). A roadmap to disentangling ecogeographical patterns of spatial synchrony in dendrosciences. Trees 32, 359–370. DOI: 10.1007/s00468-017-1653-0.
8. Alday JG, Shestakova TA, Resco de Dios V, Voltas J (2018). DendroSync: An R package to unravel synchrony patterns in tree-ring networks. Dendrochronologia 47, 17–22. DOI: 10.1016/j.dendro.2017.12.003.
7. Shestakova TA, Voltas J, Saurer M, Siegwolf RTW, Kirdyanov AV (2017). Warming effects on Pinus sylvestris in the cold–dry Siberian forest–steppe: positive or negative balance of trade? Forests 8, 490. DOI: 10.3390/f8120490.
6. Camarero JJ, Fernández-Pérez L, Kirdyanov AV, Shestakova TA, Knorre AA, Kukarskih VV, Voltas J (2017). Minimum wood density of conifers portrays changes in spring precipitation at dry and cold Eurasian sites from the forest-steppe and Mediterranean biomes. Trees 31, 1423–1437. DOI: 10.1007/s00468-017-1559-x.
5. Shestakova TA, Camarero JJ, Ferrio JP, Knorre AA, Gutiérrez E, Voltas J (2017). Increasing drought effects on five European pines modulate Δ13C-growth coupling along a Mediterranean altitudinal gradient. Functional Ecology 31, 1359–1370. DOI: 10.1111/1365-2435.12857.
4. Choury Z, Shestakova TA, Himrane H, Touchan R, Kherchouche D, Camarero JJ, Voltas J (2017). Quarantining the Sahara desert: growth and water-use efficiency of Aleppo pine in the Algerian Green Barrier. European Journal of Forest Research 136, 139–152. DOI: 10.1007/s10342-016-1014-3.
3. Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, Knorre AA, Linares JC, Resco de Dios V, Sánchez-Salguero R, Voltas J (2016). Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the USA 113, 662–667. DOI: 10.1073/pnas.1514717113.
2. Shestakova TA, Aguilera M, Ferrio JP, Gutiérrez E, Voltas J (2014). Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance–covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiology 34, 819–838. DOI: 10.1093/treephys/tpu037.
1. Touchan R, Meko DM, Ballesteros-Cánovas JA, Sánchez-Salguero R, Camarero JJ, Kerchouche D, Muntan E, Khabcheche M, Blanco JA, Rodriguez Morata C, Garófano-Gómez V, Martín LA, Alfaro-Sánchez R, Garah K, Hevia A, Madrigal-González J, Sánchez-Miranda A, Shestakova TA, Tabakova M (2013). Dendrochronology course in Valsaín Forest, Segovia, Spain. Tree-Ring Research 69, 93–100. DOI: 10.3959/1536-1098-69.2.93.
1. Gagen M, Battipaglia G, Daux V, Duffy J, Dorado-Liñán I, Andreu-Hayles L, Martínez-Sancho E, McCarroll D, Shestakova TA, Treydte K (2022). Climate signals in stable isotope tree-ring records. In Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses (Siegwolf RTW, Brooks JR, Roden J, Saurer M, eds). Springer: Tree Physiology. DOI: 10.1007/978-3-030-92698-4_19.
1. Voltas J, Amigó R, Shestakova TA, di Matteo G, Díaz R, Zas R (2024). Leveraging transnational networks of common gardens: range-wide sites for Pinus pinaster adaptive evaluation. Bulletin of the Ecological Society of America 105, e2122. 10.1002/bes2.2122
2. Shestakova TA, Rogers BM, Kukavskaya E (2021, December 21). Primary Forest Case Study: Boreal Siberia. International Union for Conservation of Nature (IUCN). Available at https://www.iucn.org/sites/dev/files/content/documents/iucn_casestudy_siberia-updated20211221.pdf.
3. Woodwell Climate Research Center and project partners (2019, October 12). Primary Boreal Forests [Infographic]. Woodwell Climate Research Center. Available at https://assets-woodwell.s3.us-east-2.amazonaws.com/wp-content/uploads/2021/07/13134132/PrimaryBorealForests.pdf. See here for the full reference list.
4. Woodwell Climate Research Center and project partners (2019, October 12). Primary Temperate Forests [Infographic]. Woodwell Climate Research Center. Available at https://assets-woodwell.s3.us-east-2.amazonaws.com/wp-content/uploads/2021/07/13134453/PrimaryTemperateForests.pdf. See here for the full reference list.
5. Woodwell Climate Research Center and project partners (2019, October 12). Primary Tropical Forests [Infographic] . Woodwell Climate Research Center. Available at https://assets-woodwell.s3.us-east-2.amazonaws.com/wp-content/uploads/2021/07/13134828/PrimaryTropicalForests.pdf. See here for the full reference list.
1. Rodenhizer H, Treharne R, Natali S, Rogers BM, Foster A, ..., Shestakova TA, Speed JDM, Strack M, Talucci AC, Tape KD, Tømmervik H, Treat C, Turetsky MR, Väisänen M, Veraverbeke S, Wang J, Wilkinson S, Zolkos S, Cavard X. Expert assessment indicates disturbances will increase future net carbon emissions from the Arctic-boreal zone.
1. looking for updates...