Rajan, A., Varghese, A., Hashardeen, S. P., Babu, A. N., Vijayan, V., & Thakur, P. (2025). Glycated alpha-synuclein assemblies cause distinct Parkinson’s disease pathogenesis in mice. ACS Chemical Neuroscience. https://doi.org/10.1021/acschemneuro.5c00428
Preprint version Author interview in Biopatrika
Subramanya, S. K., Shekhar, S., Kumar, D. B., Senthil, S., Allimuthu, D., Luk, K., & Thakur, P. (2025). A novel mouse model of Parkinson’s disease for investigating progressive pathology and neuroprotection. bioRxiv. https://doi.org/10.1101/2025.02.13.638053
Hosseini, S., Thakur, P., Cedeno, D., Fereidoni, M., & Elahdadi Salmani, M. (2025). Glial cells in health and disease: Impacts on neural circuits and plasticity. Frontiers in Cellular Neuroscience, 19. https://doi.org/10.3389/fncel.2025.1569725
Kovacheva, L., Shin, J., Zaldivar-Diez, J., Mankel, J., Farassat, N., Costa, K. M., Thakur, P., Obeso, J., & Roeper, J. (2025). Recovery of the full in vivo firing range in post-lesion surviving DA SN neurons associated with Kv4.3-mediated pacemaker plasticity. eLife. https://doi.org/10.7554/eLife.1040370
Thakur, P. (2022). Mitochondrial calcium homeostasis in synaptic functions. In Mitochondria in Neurological Disorders. Academic Press. ISBN: 9780128217313
Kachappilly, N., Srivastava, J., Swain, B. P., & Thakur, P. (2022). Interaction of alpha-synuclein with lipids. Methods in Cell Biology. Academic Press. https://doi.org/10.1016/bs.mcb.2021.12.002
Daniel, N. H., Aravind, A., & Thakur, P. (2021). Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology, 87, 243–257. https://doi.org/10.1016/j.neuro.2021.10.008
Thakur, P.*, Luk, K., & Roeper, J. (2019). Selective K-ATP channel-dependent loss of pacemaking in vulnerable nigrostriatal dopamine neurons by α-synuclein aggregates. bioRxiv. https://doi.org/10.1101/842344
*Corresponding author. Highlighted by preLights
Thakur, P., Chiu, W. H., Roeper, J., & Goldberg, J. A. (2019). α-Synuclein 2.0 – Moving towards cell-type specific pathophysiology. Neuroscience, 412, 248–256. https://doi.org/10.1016/j.neuroscience.2019.06.005
Thakur, P*., Breger, L*., Lundblad, M., Wan, O. W., Mattsson, B., Luk, K., Lee, V. M., Trojanowski, J., & Björklund, A. (2017). Modeling Parkinson’s disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. PNAS, 114(39), E8284–E8293. https://doi.org/10.1073/pnas.1710442114
*Equal contribution
Thakur, P., & Nehru, B. (2015). Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson’s disease. Molecular Neurobiology, 51(1), 209–219. https://doi.org/10.1007/s12035-014-8769-7
Thakur, P., & Nehru, B. (2014). Long-term heat shock protein (HSP) induction by carbenoxolone improves hallmark features of Parkinson’s disease in a rotenone-based model. Neuropharmacology, 79, 190–200. https://doi.org/10.1016/j.neuropharm.2013.11.016
Thakur, P., & Nehru, B. (2014). Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone-induced Parkinson’s disease pathology. Neurochemistry International, 75, 1–10. https://doi.org/10.1016/j.neuint.2014.05.002
Thakur, P., & Nehru, B. (2013). Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience, 231, 420–431. https://doi.org/10.1016/j.neuroscience.2012.11.006
For complete list of publications see https://orcid.org/0000-0002-4462-5550