Jamie Zawinski is what I would call a duct-tape programmer. And I say that with a great deal of respect. He is the kind of programmer who is hard at work building the future, and making useful things so that people can do stuff. He is the guy you want on your team building go-carts, because he has two favorite tools: duct tape and WD-40. And he will wield them elegantly even as your go-cart is careening down the hill at a mile a minute. This will happen while other programmers are still at the starting line arguing over whether to use titanium or some kind of space-age composite material that Boeing is using in the 787 Dreamliner.

Published jointly by the Commission and National Media Laboratory, St. Paul, MN, helps clarify long-term storage requirements for magnetic media and provides guidance on how to care for these media to maximize their life expectancies. Covers what can go wrong with magnetic media and how to prevent information loss and premature degradation of magnetic tape.


Tape It Up Download Apk


Download Zip 🔥 https://urlgoal.com/2y3CvK 🔥



Hey Chris! Just discovered your work a few months ago, first time commenting. Your plugins have completely changed the way I mix. I share your passion in pursuing the lovely qualities of tape and real-world distortion, so your work is right up my alley. This one is perfect for me; while I enjoy the bells and whistles of ToTape, FromTape and IronOxide, I love the simplicity of throwing Tape on my tracks and calling it good until I want to push something. I actually really like it instantiated in the last position of all of my tracks.

Nice day, some tapes are not available in the scratch pool, although they are physically present in the library. He tried to move them to the library and did a full scan, but it didn't help. What can be done to make them available?

I do manage multiple libraries worldwide, and sometimes tapes are swapped with other tapes (with different barcodes), but until I perform a Full Scan, or even a Reset Library of the device in the Commcell Console, I could notice that the library content is not updated in the Commcell Console.

Make sure your Commvault-configured tape library matches the same logical configuration (slots numbers / positions, and tape barcodes that are in each slot) that is defined and you will see in the IBM TS library overview.

Tape was an important medium for primary data storage in early computers, typically using large open reels of 7-track, later 9-track tape. Modern magnetic tape is most commonly packaged in cartridges and cassettes, such as the widely supported Linear Tape-Open (LTO)[1] and IBM 3592 series. The device that performs the writing or reading of data is called a tape drive. Autoloaders and tape libraries are often used to automate cartridge handling and exchange. Compatibility was important to enable transferring data.

Initially, magnetic tape for data storage was wound on 10.5-inch (27 cm) reels.[5] This standard for large computer systems persisted through the late 1980s, with steadily increasing capacity due to thinner substrates and changes in encoding. Tape cartridges and cassettes were available starting in the mid-1970s and were frequently used with small computer systems. With the introduction of the IBM 3480 cartridge in 1984, described as "about one-fourth the size ... yet it stored up to 20 percent more data",[6] large computer systems started to move away from open-reel tapes and towards cartridges.[7]

Magnetic tape was first used to record computer data in 1951 on the UNIVAC I.[8] The UNISERVO drive recording medium was a thin metal strip of 0.5-inch (12.7 mm) wide nickel-plated phosphor bronze. Recording density was 128 characters per inch (198 micrometres per character) on eight tracks at a linear speed of 100 in/s (2.54 m/s), yielding a data rate of 12,800 characters per second. Of the eight tracks, six were data, one was for parity, and one was a clock, or timing track. Making allowances for the empty space between tape blocks, the actual transfer rate was around 7,200 characters per second. A small reel of mylar tape provided separation between the metal tape and the read/write head.[9]

Early IBM tape drives, such as the IBM 727 and IBM 729, were mechanically sophisticated floor-standing drives that used vacuum columns to buffer long u-shaped loops of tape. Between servo control of powerful reel motors, a low-mass capstan drive, and the low-friction and controlled tension of the vacuum columns, fast start and stop of the tape at the tape-to-head interface could be achieved.[a] The fast acceleration is possible because the tape mass in the vacuum columns is small; the length of tape buffered in the columns provides time to accelerate the high-inertia reels. When active, the two tape reels thus fed tape into or pulled tape out of the vacuum columns, intermittently spinning in rapid, unsynchronized bursts, resulting in visually striking action. Stock shots of such vacuum-column tape drives in motion were ironically used to represent computers in movies and television.[11]

Early half-inch tape had seven parallel tracks of data along the length of the tape, allowing 6-bit characters plus 1 bit of parity written across the tape. This was known as 7-track tape. With the introduction of the IBM System/360 mainframe, 9-track tapes were introduced to support the new 8-bit characters that it used. The end of a file was designated by a special recorded pattern called a tape mark, and end of the recorded data on a tape by two successive tape marks. The physical beginning and end of usable tape was indicated by reflective adhesive strips of aluminum foil placed on the backside.[citation needed]

At least partly due to the success of the System/360, and the resultant standardization on 8-bit character codes and byte addressing, 9-track tapes were very widely used throughout the computer industry during the 1970s and 1980s.[13] IBM discontinued new reel-to-reel products replacing them with cartridge based products beginning with its 1984 introduction of the cartridge-based 3480 family.[citation needed]

LINCtape, and its derivative, DECtape were variations on this "round tape". They were essentially a personal storage medium,[14] used tape that was 0.75 inches (19 mm) wide and featured a fixed formatting track which, unlike standard tape, made it feasible to read and rewrite blocks repeatedly in place. LINCtapes and DECtapes had similar capacity and data transfer rate to the diskettes that displaced them, but their access times were on the order of thirty seconds to a minute.[citation needed]

In the context of magnetic tape, the term cassette or cartridge means a length of magnetic tape in a plastic enclosure with one or two reels for controlling the motion of the tape. The type of packaging affects the load and unload times as well as the length of tape that can be held. In a single-reel cartridge, there is a takeup reel in the drive while a dual reel cartridge has both takeup and supply reels in the cartridge. A tape drive uses one or more precisely controlled motors to wind the tape from one reel to the other, passing a read/write head as it does.[citation needed]

A different type is the endless tape cartridge, which has a continuous loop of tape wound on a special reel that allows tape to be withdrawn from the center of the reel and then wrapped up around the edge, and therefore does not need to rewind to repeat. This type is similar to a single-reel cartridge in that there is no take-up reel inside the tape drive.[citation needed]

In the 1970s and 1980s, audio Compact Cassettes were frequently used as an inexpensive data storage system for home computers,[b] or in some cases for diagnostics or boot code for larger systems such as the Burroughs B1700.[16] Compact cassettes are logically, as well as physically, sequential; they must be rewound and read from the start to load data. Early cartridges were available before personal computers had affordable disk drives, and could be used as random access devices, automatically winding and positioning the tape, albeit with access times of many seconds.

In 1984 IBM introduced the 3480 family of single reel cartridges and tape drives which were then manufactured by a number of vendors through at least 2004. Initially providing 200 megabytes per cartridge, the family capacity increased over time to 2.4 gigabytes per cartridge. DLT (Digital Linear Tape), also a cartridge-based tape, was available beginning 1984 but as of 2007 future development was stopped in favor of LTO.[citation needed]

Linear Tape-Open (LTO) single-reel cartridge was announced in 1997 at 100 gigabytes and in its eighth generation supports 12 terabytes in the same sized cartridge. As of 2019[update] LTO has completely displaced all other tape technologies in computer applications, with the exception of some IBM 3592 family at the high-end.[citation needed]

The width of the media is the primary classification criterion for tape technologies. One-half-inch (13 mm) has historically been the most common width of tape for high-capacity data storage.[21] Many other sizes exist and most were developed to either have smaller packaging or higher capacity.[citation needed]

The linear method arranges data in long parallel tracks that span the length of the tape. Multiple tape heads simultaneously write parallel tape tracks on a single medium. This method was used in early tape drives. It is the simplest recording method, but also has the lowest data density.[citation needed]

A variation on linear technology is linear serpentine recording, which uses more tracks than tape heads. Each head still writes one track at a time. After making a pass over the whole length of the tape, all heads shift slightly and make another pass in the reverse direction, writing another set of tracks. This procedure is repeated until all tracks have been read or written. By using the linear serpentine method, the tape medium can have many more tracks than read/write heads. Compared to simple linear recording, using the same tape length and the same number of heads, data storage capacity is substantially higher.[citation needed] 2351a5e196

quran trcmsi

the statistical probability of love at first sight book download

download converter standalone 6.2.0.1

one piece java game download

best bet tips download