Solution:
Given:
B = 4.5 T,
r = 8 cm = 0.08 m,
θ = 0° (perpendicular)
Area, A = πr²
Using the formula:
ΦB = BAcos θ: ΦB = (4.5 T) * (π * (0.08 m)²) * cos(0°)
Answer:
ΦB = (4.5 T) * (π * (0.08 m)²) * cos(0°)
= 4.5 * π * (0.0064) * 1
≈ 0.0901 Wb
Solution:
Given:
B = 0.6 T,
Length (l) = 0.35 m,
Width (w) = 0.25 m,
θ = 30°
Area, A = lw
Using the formula:
ΦB = BAcos θ:
Answer:
ΦB = (0.6 T) * (0.35 m * 0.25 m) * cos(30°)
= 0.6 * 0.0875 * √3
≈ 0.0901 Wb
Solution:
Given:
B = 0.9 T,
Side length (s) = 0.2 m,
θ = 45°
Area, A = s²
Using the formula:
ΦB = BAcos θ:
Answer:
ΦB = (0.9 T) * (0.2 m * 0.2 m) * cos(45°)
= 0.9 * 0.04 * √2
≈ 0.0506 Wb