This figure adopted from Nat. Commun. 8, 1710 (2017).
A quantum dot (QD) is a zero-dimensional structure where electrons are confined in all three dimensions. In semiconductor electron systems, QDs are used to study various electron-correlation effects such as the Coulomb blockade effect and the Kondo effect. A QD is also used to realize a qubit with the charge or spin degree of freedom of the confined electrons. Understanding the behavior of the transmission phase of electrons scattered by a QD is of fundamental interest. In this research, we insert a QD into one path of the original two-path quantum interferometer and study the transmission phase of electrons acquired when scattered through the QD. Our approach to measuring the transmission phase of electrons allows for the suppression of undesired contributions from multiple interference paths (see APL 2015), which typically hinder a proper evaluation of the transmission phase. We have investigated the phase behavior of a Kondo correlated QD and that of a large QD containing hundreds of electrons.
"Non-universal transmission phase behaviour of a large quantum dot",
H. Edlbauer, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck, T. Meunier, and C. Bäuerle,
Nat. Commun. 8, 1710 (2017). (arXiv)
"Mesoscopic phase behavior in a quantum dot around crossover between single-level and multilevel transport regimes",
S. Takada, M. Yamamoto, C. Bäuerle, A. Ludwig, A. D. Wieck, and S. Tarucha,
Phys. Rev. B 95, 241301(R) (2017). (arXiv)
"Low-temperature behavior of transmission phase shift across a Kondo correlated quantum dot",
S. Takada, M. Yamamoto, C. Bäuerle, A. Alex, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha,
Phys. Rev. B 94, 081303(R) (2016). (arXiv)
"Measurement of the transmission phase of an electron in a quantum two-path interferometer",
S. Takada, M. Yamamoto, C. Bäuerle, K. Watanabe, A. Ludwig, A. D. Wieck, and S. Tarucha,
Applied Physics Letters 107, 063101 (2015). (arXiv)
"Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer",
S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha,
Phys. Rev. Lett. 113, 126601 (2014). (arXiv)
"Electrical control of a solid-state flying qubit",
M. Yamamoto, S. Takada, C. Bäuerle, K. Watanabe, A. D. Wieck, and S. Tarucha,