List of published articles [APA style]
[2024]
Shankar, S. K., Pothancheri, G., Sasi, D., & Mishra, S. (2024). Bringing Teachers in the Loop: Exploring Perspectives on Integrating Generative AI in Technology-Enhanced Learning. International Journal of Artificial Intelligence in Education, 1–26. https://doi.org/10.1007/s40593-024-00428-8
Chejara, P., Prieto, L. P., Dimitriadis, Y., Rodríguez-Triana, M. J., Ruiz-Calleja, A., Kasepalu, R., & Shankar, S. K. (2024). The Impact of Attribute Noise on the Automated Estimation of Collaboration Quality Using Multimodal Learning Analytics in Authentic Classrooms. Journal of Learning Analytics, 11(2), 73-90. https://doi.org/10.18608/jla.2024.8253
Muravevskaia, E., Kuriappan, B., Shankar, S. K., Krishnaveni, M., & AS, S. L. (2024, July). Observing the Gaps from Theory to Practice in Rural Indian Public School Teachers’ Pedagogical Competencies in Social-Emotional Learning. In 2024 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 250-254). IEEE. https://doi.org/10.1109/ICALT61570.2024.00079
[2023]
Chejara, P., Prieto, L. P., Rodríguez-Triana, M. J., Ruiz-Calleja, A., Kasepalu, R., & Shankar, S.K. (2023, March). How to Build More Generalizable Models for Collaboration Quality? Lessons Learned from Exploring Multi-Context Audio-Log Datasets using Multimodal Learning Analytics. In LAK23: 13th International Learning Analytics and Knowledge Conference (LAK2023). ACM, USA, 111–121. https://doi.org/10.1145/3576050.3576144
Shankar, S.K., Ruiz-Calleja, A., Prieto, L.P., Rodríguez-Triana, M.J., Chejara, P., & Tripathi, S. (2023), CIMLA: A Modular and Modifiable Data Preparation, Organization, and Fusion Infrastructure to Partially Support the Development of Context-aware MMLA Solutions. JUCS - Journal of Universal Computer Science 29(3): 265-297. https://doi.org/10.3897/jucs.84558
Chejara, P., Kasepalu, R., Prieto, L. P., Rodríguez-Triana, M. J., Ruiz-Calleja, A., & Shankar, S.K. (2023, March), Multimodal Learning Analytics research in the wild: challenges and their potential solutions. In CEUR Workshop proceeding of CrossMMLA'23.
Shankar, S.K., & Sasi, D. (2023), A Set of Evidence-based Guidelines for Planning Authentic Multimodal Learning Analytics Situations by Involving Cross-Disciplinary Stakeholders. Dykinson, ISBN 978-84-1170-558-5.
[2022]
Shankar, S. K., Rodríguez-Triana, M. J., Prieto, L. P., Ruiz-Calleja, A., & Chejara, P. (2022). CDM4MMLA: Contextualized Data Model for MultiModal Learning Analytics. In the Multimodal Learning Analytics Handbook. Springer, Cham. https://doi.org/10.1007/978-3-031-08076-0_9
Shankar, S. K., Tripathi, S., Nupur, N., & Chejara, P. (2022, July). Teachers' reflections on students’ learning approaches who resumed physical classrooms after almost two years due to COVID-19 pandemic-induced disruptions. In the 14th International Conference on Education and New Learning Technologies (EDULEARN 2022). IATED (pp. 1656-1664). https://doi.org/10.21125/edulearn.2022.0437
[2021]
Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., Shankar, S. K., & Kasepalu, R. (2021). EFAR-MMLA: An evaluation framework to assess and report generalizability of machine learning models in MMLA. Sensors, MDPI 21(8), 2863. https://doi.org/10.3390/s21082863
Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., Shankar, S. K., & Kasepalu, R. (2021). CoTrack2: A tool to track collaboration across physical and digital spaces with real time activity visualization. In Companion Proceedings of the 11th International Conference on Learning Analytics & Knowledge (LAK 2021). SoLAR (pp. 406-406). https://www.solaresearch.org/core/lak21-companion-proceedings/
[2020]
Shankar, S. K., Rodríguez-Triana, M. J., Ruiz-Calleja, A., Prieto, L. P., Chejara, P., & Martínez-Monés, A. (2020). Multimodal Data Value Chain (M-DVC): A conceptual tool to support the development of Multimodal Learning Analytics solutions. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 15(2), (pp. 113-122). https://doi.org/10.1109/RITA.2020.2987887
Huertas Celdrán, A., Ruipérez-Valiente, J. A., Garcia Clemente, F. J., Rodríguez-Triana, M. J., Shankar, S. K., & Martinez Perez, G. (2020). A scalable architecture for the dynamic deployment of Multimodal Learning Analytics applications in smart classrooms. Sensors, MDPI, 20 (10), 2923. https://doi.org/10.3390/s20102923
De Silva, L. M. H., Rodríguez-Triana, M. J., Chounta, I., Tammets, K., Shankar, S. K. (2020, March). Curriculum analytics as a communication mediator among stakeholders to enable the discussion and inform decision-making. In Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK 2020). SoLAR (pp. 762-764). https://www.solaresearch.org/core/lak20-companion-proceedings/
Chejara, P., Kasepalu, R., Shankar, S. K., Prieto, L. P., Rodríguez-Triana, M. J., & Ruiz-Calleja, A. (2020, March). MMLA approach to track collaborative behavior in face-to-Face blended settings. In Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK 2020). SoLAR, (pp. 543-548). https://www.solaresearch.org/core/lak20-companion-proceedings/
Chejara, P., Prieto, L. P., Rodríguez-Triana, M., Ruiz-Calleja, A., & Shankar, S. K. (2020, March). Cotrack: A tool for tracking collaboration across physical and digital spaces in collocated blended settings. In Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK 2020). SoLAR, (pp. 186-186). https://www.solaresearch.org/core/lak20-companion-proceedings/
Shankar, S. K. (2020, March). Challenges in multichannel data discovery and integration for monitoring performance in self-regulated learning. In Companion Proceedings of the 10th International Conference on Learning Analytics & Knowledge (LAK 2020). SoLAR, (pp. 455- 458). https://www.solaresearch.org/core/lak20-companion-proceedings/
Shankar, S. K., Ruiz-Calleja, A., Prieto, L. P., & Rodríguez-Triana, M. J. (2020, July). A Multimodal Learning Analytics approach to support evidence-based teaching and learning Practices. In IEEE 20th International Conference on Advanced Learning Technologies (ICALT 2020). IEEE, (pp. 381-383). https://doi.org/10.1109/ICALT49669.2020.00120
Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., Shankar, S. K., & Kasepalu, R. (2020, September). Quantifying collaboration quality in face-to-face classroom settings using MMLA. In International Conference on Collaboration Technologies and Social Computing (CollabTech 2020). Lecture Notes in Computer Science, Springer, Cham, 12324 (pp. 159-166). https://doi.org/10.1007/978-3-030-58157-2_11
[2019]
Shankar, S. K., Calleja, A. R., Iglesias, S. S., Arranz, A. O., Topali, P., & Monés, A. M. (2019, June). A data value chain to model the processing of multimodal evidence in authentic learning scenarios. In CEUR Workshop proceeding of Learning Analytics Summer Institute Spain (LASI 2019). CEUR Proc., 2415 (pp. 71-83).
Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., & Shankar, S. K. (2019, September). Exploring the triangulation of dimensionality reduction when interpreting multimodal learning data from authentic settings. In European Conference on Technology Enhanced Learning (EC-TEL 2019). Lecture Notes in Computer Science, Springer, Cham, 11722 (pp. 664-667). https://doi.org/10.1007/978-3-030-29736-7_62
Shankar, S. K., Ruiz-Calleja, A., Prieto, L. P., Rodríguez-Triana, M. J., & Chejara, P. (2019, September). An architecture and data model to process multimodal evidence of learning. In International Conference on Web-Based Learning (ICWL 2019). Lecture Notes in Computer Science, Springer, Cham, 11841 (pp. 72-83). https://doi.org/10.1007/978-3-030-35758-0_7
[2018]
Shankar, S. K., Prieto, L. P., Rodríguez-Triana, M. J., & Ruiz-Calleja, A. (2018, July). A review of multimodal learning analytics architectures. In IEEE 18th International Conference on Advanced Learning Technologies (ICALT 2018). IEEE, (pp. 212-214). https://doi.org/10.1109/ICALT.2018.00057
[2016]
Kaur, N., Grewal, D. K., & Shankar, S. K. (2016, April). Typical and atypical hierarchical routing protocols for WSNs: A review. In IEEE International Conference on Computing, Communication and Automation (ICCCA 2016). IEEE, (pp. 465-470). https://doi.org/10.1109/CCAA.2016.7813764
Shankar, S. K., & Tomar, A. S. (2016, May). A survey on wireless body area network and electronic-healthcare. In IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT 2016). IEEE, (pp. 598-603). https://doi.org/10.1109/RTEICT.2016.7807892
Shankar, S. K., & Kaur, A. (2016, May). Constraint data mining using apriori algorithm with AND operation. In IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT 2016). IEEE, (pp. 1025-1029). https://doi.org/10.1109/RTEICT.2016.7807985
Kaur, A., Aggarwal, V., & Shankar, S. K. (2016, May). An efficient algorithm for generating association rules by using constrained itemsets mining. In IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT 2016). IEEE, (pp. 99-102). https://doi.org/10.1109/RTEICT.2016.7807791
Tomar, A. S., Shankar, S. K., Sharma, M., & Bakshi, A. (2016, September). Enhanced image based authentication with secure key exchange mechanism using ECC in cloud. In Security in Computing and Communications (SSCC 2016). Communications in Computer and Information Science, 625 (pp. 63-73). Springer, Singapore. https://doi.org/10.1007/978-981-10-2738-3_6
[2015]
Shankar, S. K., Tomar, A. S., & Tak, G. K. (2015, December). Secure medical data transmission by using ECC with mutual authentication in WSNs. In Fourth International Conference on Eco-friendly Computing and Communication Systems (ICECCS 2015). Procedia Computer Science, Elsevier, 70, (pp. 455-461). https://doi.org/10.1016/j.procs.2015.10.078