Preprints:
Equidistribution of partial coverings defined from closed geodesics, Asbjørn Christian Nordentoft, Ser Peow Tan. arxiv.org/abs/2502.08472
Carrier graphs for representations of the rank two free group into isometries of hyperbolic three space , Ser Peow Tan, Binbin Xu. https://arxiv.org/abs/1807.07277
Publications
(Links are mostly to Arxiv versions which may differ slightly from published version)52. Optimal independent generating system for the congruence subgroups Γ_0(p), Nhat Minh Doan, Sang-hyun Kim, Mong Lung Lang, Ser Peow Tan. Journal of Geometric Analysis 35, Article 216 (2025) https://arxiv.org/abs/2209.13937
51. Prime orthogeodesics, concave cores and families of identities on hyperbolic surfaces, Ara Basmajian, Hugo Parlier and Ser Peow Tan. Adv. Math. 460 (2025). https://arxiv.org/abs/2006.04872
50. Measuring pants, Nhat Minh Doan, Hugo Parlier, Ser Peow Tan. Trans. AMS., Volume 376, Number 8, August 2023, Pages 5281–5306 (https://arxiv.org/abs/2002.02738).
49. Caroline Series and hyperbolic geometry, John Parker, Ser Peow Tan. Notices of the AMS, 70, No 3(2023) 380-389.
48. Dilogarithm identities after Bridgeman, Pradthana Jaipong, Mong Lung Lang, Ser Peow Tan and Ming Hong Tee. Math. Proc. Cambridge Philos. Soc., 174, 1-23, (2023).
47. Hyperbolic jigsaws and families of pseudomodular groups II, Beicheng Lou, Ser Peow Tan, and Anh Duc Vo. IMRN, 2022 (21), 16524-16568 (2022).
46. Weakly positive and directed Anosov representations , Sungwoon Kim, Ser Peow Tan and Tengren Zhang. Adv. Math. 408 (2022).
45. Shapes of hyperbolic triangles and once-punctured torus groups, Sang-hyun Kim, Thomas Koberda, Jaejeong Lee, Ken'ichi Ohshika, Ser Peow Tan, with an appendix by Xinghua Gao. Math. Z., 299, 2103–2130 (2021).
44. Kim, Youngju ; Tan, Ser Peow . Ideal right-angled pentagons in hyperbolic 4-space.J. Korean Math. Soc. 56 (2019), no. 4, 1131--1158. http://koreascience.or.kr/article/JAKO201918266171748.page
43. Goldman, William ; McShane, Greg ; Stantchev, George ; Tan, Ser Peow . Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane. Mem. Amer. Math. Soc. 259 (2019), no. 1249, vii+78 pp. ISBN: 978-1-4704-3614-8; 978-1-4704-5253-7. https://arxiv.org/abs/1509.03790
42. Lou, Beicheng ; Tan, Ser Peow ; Vo, Anh Duc . Hyperbolic jigsaws and families of pseudomodular groups, I. Geom. Topol. 22 (2018), no. 4, 2339--2366. https://arxiv.org/abs/1611.02922
41. Labourie, François ; Tan, Ser Peow . The probabilistic nature of McShane's identity: planar tree coding of simple loops. Geom. Dedicata 192 (2018), 245--266. https://arxiv.org/abs/1707.07441
40. Hu, Hengnan ; Tan, Ser Peow ; Zhang, Ying . Polynomial automorphisms of C^n preserving the Markoff-Hurwitz polynomial. Geom. Dedicata 192 (2018), 207--243. https://arxiv.org/abs/1501.06955
39. Series, Caroline ; Tan, Ser Peow ; Yamashita, Yasushi . The diagonal slice of Schottky space. Algebr. Geom. Topol. 17 (2017), no. 4, 2239--2282. https://arxiv.org/abs/1409.6863
38. Bridgeman, Martin ; Tan, Ser Peow . Identities on hyperbolic manifolds. Handbook of Teichmüller theory. Vol. V, 19--53, IRMA Lect. Math. Theor. Phys., 26, Eur. Math. Soc., Zürich, 2016. https://arxiv.org/abs/1309.3578
37. Maloni, Sara ; Palesi, Frédéric ; Tan, Ser Peow . On the character variety of the four-holed sphere.Groups Geom. Dyn. 9 (2015), no. 3, 737--782. https://arxiv.org/abs/1304.5770
36. Hu, Hengnan ; Tan, Ser Peow ; Zhang, Ying . A new identity for SL(2,C)-characters of the once punctured torus group. Math. Res. Lett. 22 (2015), no. 2, 485--499. https://arxiv.org/abs/1402.3904
35. Luo, Feng ; Tan, Ser Peow . A dilogarithm identity on moduli spaces of curves. J. Differential Geom. 97 (2014), no. 2, 255--274. https://projecteuclid.org/euclid.jdg/1405447806
34. Hu, Hengnan ; Tan, Ser Peow . New identities for small hyperbolic surfaces. Bull. Lond. Math. Soc. 46 (2014), no. 5, 1021--1031. https://arxiv.org/abs/1402.1573
33. Kim, Inkang ; Kim, Joonhyung ; Tan, Ser Peow . McShane's identity in rank one symmetric spaces. Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 1, 113--137. https://arxiv.org/abs/1203.5901
32. Bridgeman, Martin ; Tan, Ser Peow . Moments of the boundary hitting function for the geodesic flow on a hyperbolic manifold. Geom. Topol. 18 (2014), no. 1, 491--520. https://arxiv.org/abs/1302.0527
31. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . Delambre-Gauss formulas for augmented, right-angled hexagons in hyperbolic 4-space. Adv. Math. 230 (2012), no. 3, 927--956. https://arxiv.org/abs/1105.2697
30. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . McShane's identity for classical Schottky groups. Pacific J. Math. 237 (2008), no. 1, 183--200. https://arxiv.org/abs/math/0411628
29. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . End invariants for SL(2,C) characters of the one-holed torus. Amer. J. Math. 130 (2008), no. 2, 385--412. https://arxiv.org/abs/math/0511621
28. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . Generalized Markoff maps and McShane's identity.Adv. Math. 217 (2008), no. 2, 761--813. https://arxiv.org/abs/math/0502464
27. Lang, Mong Lung ; Tan, Ser Peow . A simple proof of the Markoff conjecture for prime powers Geom. Dedicata 129 (2007), 15--22. https://arxiv.org/abs/math/0508443
26. Ng, Shawn Pheng Keong ; Tan, Ser Peow . The complement of the Bowditch space in the SL(2,C) character variety. Osaka J. Math. 44 (2007), no. 2, 247--254. https://arxiv.org/abs/math/0603418
25. Kojima, Sadayoshi ; Mizushima, Shigeru ; Tan, Ser Peow . Circle packings on surfaces with projective structures: a survey. Spaces of Kleinian groups, 337--353, London Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006. https://www.cambridge.org/core/books/spaces-of-kleinian-groups/circle-packings-on-surfaces-with-projective-structures-a-survey/46E58934104F303A9046C3866DBA2FBF
24. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . Necessary and sufficient conditions for McShane's identity and variations. Geom. Dedicata 119 (2006), 199--217. https://arxiv.org/abs/math/0411184
23. Kojima, Sadayoshi ; Mizushima, Shigeru ; Tan, Ser Peow . Circle packings on surfaces with projective structures and uniformization. Pacific J. Math. 225 (2006), no. 2, 287--300. https://arxiv.org/abs/math/0308147
22. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . Generalizations of McShane's identity to hyperbolic cone-surfaces. J. Differential Geom. 72 (2006), no. 1, 73--112. https://arxiv.org/abs/math/0404226
21. Tan, Ser Peow ; Wong, Yan Loi ; Zhang, Ying . The SL(2,C) character variety of a one-holed torus. Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 103--110. https://arxiv.org/abs/math/0509033
20. Kojima, Sadayoshi ; Mizushima, Shigeru ; Tan, Ser Peow . Circle packings on surfaces with projective structures. J. Differential Geom. 63 (2003), no. 3, 349--397. https://arxiv.org/abs/math/0111214
19. Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser-Peow . Principal congruence subgroups of the Hecke groups. J. Number Theory 85 (2000), no. 2, 220--230. https://www.sciencedirect.com/science/article/pii/S0022314X00925423
18. Lang, Mong-Lung ; Tan, Ser-Peow . Normalizers of the congruence subgroups of the Hecke group G5. II. Proc. Amer. Math. Soc. 128 (2000), no. 8, 2271--2280. https://www.ams.org/journals/proc/2000-128-08/S0002-9939-00-05677-X/S0002-9939-00-05677-X.pdf
17. Lang, Mong-Lung ; Tan, Ser-Peow . Normalizers of the congruence subgroups of the Hecke group G5. Proc. Amer. Math. Soc. 127 (1999), no. 11, 3131--3140. https://www.ams.org/journals/proc/1999-127-11/S0002-9939-99-05154-0/S0002-9939-99-05154-0.pdf
16. Tan, Eng-Chye ; Tan, Ser-Peow . Quadratic Diophantine equations and two generator Möbius groups. J. Austral. Math. Soc. Ser. A 61 (1996), no. 3, 360--368. https://www.cambridge.org/core/journals/journal-of-the-australian-mathematical-society/article/quadratic-diophantine-equations-and-two-generator-mobius-groups/07A480CCDAEBCD5A9F16199E2B244FF1
15. Tan, Ser Peow . Self-intersections of curves on surfaces. Geom. Dedicata 62 (1996), no. 2, 209--225. https://link.springer.com/article/10.1007/BF00147812
14. Tan, Ser Peow . Quasi-Fuchsian structures on hyperbolic 3-manifolds admitting a decomposition into ideal tetrahedra. Arch. Math. (Basel) 66 (1996), no. 3, 243--249.
13. Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . Independent generators for congruence subgroups of Hecke groups. Math. Z. 220 (1995), no. 4, 569--594. https://link.springer.com/article/10.1007/BF02572632
12. Tan, Ser Peow . Singular pleated surfaces and CP1-structures. Glasgow Math. J. 37 (1995), no. 2, 179--190.
11. Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . An algorithm for determining if a subgroup of the modular group is congruence. J. London Math. Soc. (2) 51 (1995), no. 3, 491--502. https://academic.oup.com/jlms/article-abstract/51/3/491/800729?redirectedFrom=fulltext
10. Tan, Ser Peow . Branched CP1-structures on surfaces with prescribed real holonomy. Math. Ann. 300 (1994), no. 4, 649--667. https://link.springer.com/article/10.1007/BF01450507
9. Tan, Ser Peow . Conformally flat 3-manifolds and Euclidean polyhedra. Comm. Anal. Geom. 2 (1994), no. 3, 415--429. https://www.intlpress.com/site/pub/files/_fulltext/journals/cag/1994/0002/0003/CAG-1994-0002-0003-a002.pdf
8. Chan, Shih-Ping ; Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . The invariants of the congruence subgroups G0(P) of the Hecke group G5. Illinois J. Math. 38 (1994), no. 4, 636--652.
7. Tan, Ser Peow . Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures. Internat. J. Math. 5 (1994), no. 2, 239--251.
6. Chan, Shih-Ping ; Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . Some invariants of Γ0(N). Linear and Multilinear Algebra 35 (1993), no. 1, 79--81.
5. Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . Subgroups of the Hecke groups with small index. Linear and Multilinear Algebra 35 (1993), no. 1, 75--77.
4. Chan, Shih-Ping ; Lang, Mong-Lung ; Lim, Chong-Hai ; Tan, Ser Peow . Special polygons for subgroups of the modular group and applications. Internat. J. Math. 4 (1993), no. 1, 11--34.
3. Tan, Ser Peow . Deformations of flat conformal structures on a hyperbolic 3-manifold. J. Differential Geom. 37 (1993), no. 1, 161--176. https://projecteuclid.org/euclid.jdg/1214453426
2. Kamishima, Yoshinobu ; Tan, Ser P. Deformation spaces on geometric structures. Aspects of low-dimensional manifolds, 263--299, Adv. Stud. Pure Math., 20, Kinokuniya, Tokyo, 1992. https://projecteuclid.org/euclid.aspm/1529259973
1. Tan, Ser Peow . Representations of surface groups into PSL(2,R) and geometric structures. Thesis (Ph.D.)–University of California, Los Angeles. ProQuest LLC, Ann Arbor, MI, 1988. 105 pp.